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Game Theory

Lecture notes. Value of information

1 One person decision problems

We start with a (finite) set K of states of nature, k ∈ K is what the agent is unknown about, we
assume a probability distribution p on K.

1.1 Representations of information

1.1.1 Partition representation of information

There is a set Ω of states of the world. To each state is associated one k ∈ K via a mapping
κ : Ω → K. The probability distribution over Ω is P. The agent’s information is represented by
a partition P of Ω. Given an element π of the partition, the probability of a state k is given by
Bayes’s rule through:

P(κ(ω) = k|ω ∈ π)

1.1.2 Signals representation of information

A transition probability from a finite set A to a finite set B is a family of probabilities over B,
one for each element of A.

Definition 1.1. A statistical experiment is given by a set of signals X , and a distribution over
signals αk ∈ ∆(X) for every signal k. Upon receiving the signal x ∈ X , the conditional probabil-
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ity of k ∈ K is given by Bayes’s rule through

P(k|x) = P(x,k)
P(x)

=
p(k)αk(x)

∑k′∈K p(k′)αk′(x)

Exercise 1.2. Can we find a partition representation from a signals representation? Can we do
the converse?

In each state of nature k, αk ∈ ∆(X) is the probability over signals to the decision maker, and
αk(x) is the probability of the particular signal x.

Example 1.3. There are 2 states of nature, Rain or Shine. I can ask for a weather forecast to my
aunt Alice, or to my uncle Bob.

Before a rainy day, my aunt Alice predicts rain 60% of the time, a shiny day 20% of the time,
and is indecisive 20% of the time. Before a sunny day, Alice predicts rain 20% of the time, is
indecisive 10% of the time, and predicts sun 70% of the time.

Alice’s statistical experiment can be represented by a matrix, where each row corresponds so a
state of nature (kR for rain, kS for shine), each column corresponds to a signal (xR for rain, xS
for shine, and xI for indecisive) and the number in the cell corresponds to the probability of the
signal if the given state of nature realizes. The matrix is as follows:

xR xI xS
kR 0.6 0.2 0.2
kS 0.2 0.1 0.7

Alice’s statistical experiment

Before a rainy day, Bob predicts rain 70% of the time, and sun 30% of the time. Before a sunny
day, he predicts rain 25% of the time, and sun 75% of the time. The statistical experiment
corresponding to Bob is as follows:

yR yS
kR 0.7 0.3
kS 0.25 0.75

Bob’s statistical experiment

1.1.3 Beliefs representation

A beliefs representation of information is given by a distribution over ∆(K), it is an element
of ∆(∆(K)). Element q has probability p(q) of realising. The interpretation is that q is the
agent’s posterior belief with probability p(q). The distribution of posterior beliefs satisfies the
martingale property:

∑
q

p(q)q = p
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Exercise 1.4. • Consider the different posteriors arising from a statistical experiment. Show
that they satisfy the martingale property.

• Consider any beliefs representation of information that satisfies the martingale property,
show that there exists a statistical experiment that induces this distribution of posteriors.

Exercise 1.5. Assume that rain and shine are equally likely, and find the beliefs representation
arising from the Alice’s and Bob’s statistical experiments.

1.2 Comparison of statistical experiments

1.2.1 Decision problems

A decision problem is given by a set of actions (choices) A and a payoff function g : A×K →R.
g(a,k) is the payoff of action a in state k.

Agent’s optimal strategy: The agent needs to find a rule: f ∗ : X → K that maximizes the total
payoff

Vα,g = Ex,kg( f ∗(x),k)

The agent’s problem is to find, for each x, an action f ∗(x) that maximizes:

EP(k|x)g( f ∗(x),k)

We introduce the function v : ∆(X)→ R given by:

v(q) = argmax
a

Eqg(a,k)

This is the maximum expected payoff to an agent of belief q.

Using the beliefs representation: We have

Ex,kg( f ∗(x),k) = Eqv(q)

The value of information is read directly from v and the distribution of posterior beliefs.

Observe that the mapping v is convex. Because of the martingale property:

Epv(q)≥ v(p)

Showing that the value of information is not negative.
Example 1.6. Assume that rain and sun are equally likely, and I need to decide if I take my
umbrella or not. My payoff is 0 if I take my umbrella, -1 if I do not take it on a rainy day, and 1
if I do not take it on a sunny day.

Before deciding if I take my umbrella or not, should I rather listen to my uncle Bob, or to my
aunt Alice?

The payoffs, depending on the state of nature and action, are as follows (U for taking the
umbrella, N for not taking it):
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U N
kR 0 −1
kS 0 1

The decision problem

Let p be the belief (conditional on the signal) that the day is sunny. The expected payoff by
taking the umbrella is 0 independently on p, and it is 2p−1 for not taking it. It is then optimal
to take the umbrella whenever p ≥ 1

2 , and optimal not to take it when p ≤ 1
2 .

Let’s look at Alice’s statistical experiment. The probability that the announces xR is 1
20.6+

1
20.2 = .4, the probability she announces xI is .15, and the probability she announces XS is .45.
Conditional on her announcing xR, the probability of a sunny day is p(kS|xU) =

.5∗.2
.5∗.6+.5∗.2 = .25

by Bayes’s rule. Thus when she announces xR, I take my umbrella and obtain an expected
payoff of 0. When she announces xI , I compute p(kS|xI) =

1
3 , so I take my umbrella for an

expected payoff of 0. Finally, p(kS|xS) =
7
9 > 1

2 , so following xS I do not take my umbrella and
my expected payoff is 5

9 . In total, my expected payoff is I listen to Alice and follow this optimal
strategy is:

.4∗0+ .15∗0+ .45∗ 5
9
= .25

Now let’s look at information from Bob. We compute p(yR)= .475, and p(yS)= .525, p(kS|yR)=
.125
.475 < 1

2 , p(kS|yS) =
.375
.525 > 1

2 . So my optimal strategy is to take the umbrella following yR, and
not to take it following yS. My expected payoff is then:

.475∗0+ .525∗ (2∗ .375
.525

−1) = .225

Overall, I am better off by listening to Alice (although she can be indecisive sometimes) rather
than to Bob.

1.2.2 Information garblings

Definition 1.7. Let X and Y be sets of signals, a garbling from X to Y is a transition probability
from X to Y .

Example 1.8. I sometimes ask my nephew Quentin to report to me what Alice says about the
weather. Quentin doesn’t reproduce perfectly Alice’s information. When Alice predicts Sun
or Rain, he conveys the message accordingly, but, when Alice is indecisive, Quentin reports a
prediction for Sun or for Rain with equal probabilities.

Before a sunny day and before a rainy day, what are the probabilities of Quentin’s reports?

Let zR or zS represent Quentin’s forecast. In the state of nature kR, we compute the probability
that Quentin announces zR as follows:

p(zR|kR) = p(zR,xR|kR)+ p(zR,xI|kR)+ p(zR,xS|kR)

= p(xR|kR)p(zR|kR,xR)+ p(xI|kR)p(zR|kR,xI)+ p(xS|kR)p(zR|kR,xS)

= .6∗1+ .2∗ .5+ .2∗0 = .7
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And p(zS|kR) = .3. I also compute p(zR|kS) = 0.2∗0+ .1∗ .5∗ .7∗1 = .75 and p(zS|kS) = .25.
I can thus represent the information from Quentin as follows:

zR zS
kR 0.7 0.3
kS 0.25 0.75

Quentin’s statistical experiment

In general (meaning, independently of the decision problem that I face), am I better off asking
Alice directly, or asking Quentin to report Alice’s forecast? Whenever I have information from
Alice, I can reproduce what Quentin does by flipping a coin if Alice is indecisive. Therefore,
Alice is always providing at least as valuable information as Quentin, and this is independent
of the decision problem that I face.

Looking at numbers, we see that Quentin and Bob’s information structures are the same. Hence,
I am indifferent to listening to Bob or to Quentin. Since Alice is better than Quentin, Alice’s
information is more valuable that Bob’s information no matter the decision problem.

Definition 1.9. A statistical experiment α = (αk) with set of signals X is more informative than
the statistical experiment β = (βk) with set of signals Y if there exists a garbling Q = (Qx)x that
mimics the latter from the former:

∀k,y βk(y) = ∑
x

αk(x)Qx(y)

What is a better experiment than another when having to make decisions? Given a decision
problem G and a statistical experiment α , and assuming the uniform probability over states of
nature, Gα represents the induced Bayesian game with one player. We let V (α,G) denote the
maximal expected payoff to the decision maker over all possible strategies in Gα .

1.2.3 Comparison of statistical experiments: usefulness

Definition 1.10. A statistical experiment α is more useful than a statistical experiment β if, for
every decision problem G,

V (α,G)≥V (β ,G)

Is Alice more useful than Bob? If we want to answer this question, we must show that the
payoff from listening to Alice is as high as from listening to Bob in every decision problem! Is
there a simpler way to do this?

1.2.4 Blackwell’s Theorem

When is a statistical experiment more useful than another? The answer is given by Blackwell’s
theorem on comparison of statistical experiments.
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Theorem 1.11. α is more useful than β if only if α is more informative than β .

Proof. We first prove that more informative experiments are always more useful. Let Q be a
garbling from X to Y that mimics β from α . Let G be any decision problem, with action set
A and payoff function g. For any strategy σ in G extended by β , define the strategy σ ′ in D
extended by α by:

σ
′
x(a) = ∑

y
Qx(y)σy(a)

The strategy σ ′ corresponds to 1) using Q to compute random signals in Y and 2) follow σ in
the decision problem according to the garbled signal obtained. We verify that σ and σ ′ give the
same expected payoff in every state of nature k:

∑
x

αk(x)σ ′
x(a)g(a,k) = ∑

x
αk(x)∑

y
Qx(y)σy(a)g(a,k)

= ∑
y

βk(y)σy(a)g(a,k)

Therefore, for every strategy in G extended by β , there exists a strategy in G extended by α

which gives at least the same payoff. Thus, α is more useful than β .

Now we prove the converse by an application of the minmax theorem. Let D the set of decision
problems where A = Y , and with payoff function bounded by 0 and 1:

D = {g : Y ×K 7→ [0,1]}

Let C be the set of (behavioral) strategies in the decision problem D with statistical experiment.
An element of C is thus a transition probability σ from X to Y . For every g,

V (α,g)≥V (β ,g)

In particular, for every g ∈ D, there exists σ in C such that the expected payoff given by σ in g
extended by α is no less than the payoff of the identity strategy in g extended by β :

∑
x,k

∑
y

αk(x)σx(y)g(y,k)≥ ∑
k

∑
y

βk(y)g(y,k) (1)

Consider the auxiliary game between players I and II in which player I chooses an element of
C, player II chooses an element of D, and the payoff to player I is:

γ(σ ,g) = ∑
x,k

∑
y

αk(x)σx(y)g(y,k)−∑
k

∑
y

βk(y)g(y,k)

Player I and II’s strategy sets are convex and compact, and the payoff function γ is linear in
each player’s strategy. We can thus apply the minmax theorem:

min
D

max
σ

γ(σ ,g) = max
σ

min
D

γ(σ ,g)

Equation (1) shows that maxσ minD γ(σ ,g)≥ 0. Thus, there exists σ∗ ∈C such that, for every
g ∈ D,

γ(σ∗,g)≥ 0 (2)
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In particular, for any pair k,y, considering the decision problem for which g(k′,y′) = 1 if
(k′,y′) = (k,y) and g(k′,y′) = 0 otherwise, equation (2) shows:

∑
x

αk(x)σx(y)≥ βk(y) (3)

For any k, summing the left side or the right side of (3) gives a total of 1. So we conclude that
for every k,y:

∑
x

αk(x)σx(y) = βk(y)

which shows that σ , seen as a garbling from X from Y , mimics β from α .

1.3 Rational inattention

Now we let the agent choose which information to receive. We do not want to put an artificial
limit on what are the experiments she may choose from. Rather, we let her choose any exper-
iment she wishes! The constraint is that information extraction is costly. More precisely, the
cost of information we consider is proportional to the decrease in entropy between her prior and
posterior beliefs. This is known as rational inattention.

1.3.1 Entropy: definition

Let p be a probability distribution in ∆(K)

• The entropy of p is defined as H(p) =−∑k p(k) log p(k)

• log = log2 by convention, 0 log0 = 0 by continuity

• Concave, maximal for the uniform distribution, 0 iff p(k) = 1 for some k

Justifications: originally, information theory

• Axiomatizations

• Shortest coding of k ∈ K, example p = (1/2,1/4,1/8,1/8)

• Coding of an iid. sequence in Kn (Shannon 48)

Reference: great book by Cover and Thomas (2006).
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1.3.2 Rational inattention

Growing literature, important papers are Sims 00, 02, Matejka McKay 15, Caplin Dean 16.

Consider a situation in which the agent decides how to allocate her information.

• Her initial belief is p ∈ ∆(K)

• She chooses any information structure, represented by a distribution p(q) over posterior
beliefs q

• The cost of information is C(H(p)−EqH(q)) for C > 0.

• After receiving information, she makes decisions in a decision problem with action set A
and payoff g : A×K → R

The agent chooses both what information to receive (and to pay for), and how to use that infor-
mation. Entropy captures the cost of processing information and of attention.

1.3.3 Solving for the rational inattention model

We know that, with belief q, optimal decisions lead to an expected payoff of v(q). The problem
becomes to maximize

Eq (v(q)+CH(q))−H(p)

over all distributions of beliefs q such that Eq = p (beliefs representation of information).

Consider the function wC(q) = v(q)+CH(q), it is in general neither concave nor convex. Let
cavw the lowest concave function that is above w. The value of the decision problem for the
agent is:

cavw(p)−H(p)

Analysis shows that either the agent stays at p and does not extract information, or locally, a
small change in p does not change the terminal beliefs of the agent.

1.4 Bayesian persuasion

Consider the situation in which a sender is informed of a state of nature, and chooses which
experiment is used by the receiver. Once she receives her information, the receiver chooses
some action, which affects both her payoff and the payoff of the sender. For instance, the
sender can be a pharmaceutical firm and the receiver a regulator. The objective of the regulator
is to approve a new drug if it is effective enough, while the objective of the pharmaceutical
firm is to have her drug approved by the regulator. What is the best way possible choice of
information by the sender?
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1.4.1 Model

There is a set K of states of nature. The sender and receiver’s prior is a distribution p. The
receiver has a finite set of actions, A, and her payoff function is gR : A×K → R. The sender’s
payoff function is gS : A×R.

We use the beliefs representation of information. The sender chooses a statistical experiment,
given by a probability distribution over ∆(K) such that Eq = p.

Given a belief q ∈ ∆(K), the received chooses an action

a∗(q) ∈ A∗(q) = argmax
a

EqgR(a,q).

1.4.2 Solving Bayesian persuasion

The sender manipulates the receiver’s beliefs. In order to find his optimal strategy, we need
to associate a payoff to each belief of the receiver. Since there may be several optimal actions
for the receiver, we choose the one that gives the best payoff to the sender (to avoid selection
problems).

We thus let:
v(q) = max

a∈A∗(q)
EgS(a,q).

The objective of the sender is then to find a distribution of q that averages to p, that maximizes

Eqv(q).

The solution to this problem is given by

cavv(p).

2 Bayesian Games: Definition

A Bayesian game is given by an information structure and a payoff structure. The set of players
I and a set of “states of nature”, K are common to both.

The information structure describes the uncertainty about the state of nature and the player’s
information about it. It is given by:

• Ω is the set of states of the world

• p ∈ ∆(Ω) is the common prior probability distribution over Ω

• Pi is the information partition of player i
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• κ : Ω 7→ K describes the state of nature as a function of the state of the world.

The payoff structure represents the player’s strategic interaction. It is given by:

• A set of actions Ai for each player i

• A payoff function gi from A := ΠiAi ×K to R for each player i

When Ω has the structure of a product space Ω = ΠiTi, and each player i is informed of the
component ti of ω = (t j) j, we say that ti is player i’s type.

An information structure I and a payoff structure G define a Bayesian game GI in which:

• A state of the world ω is drawn according to p, the state of nature being k = κ(ω)

• Each player i is informed of the element of Pi containing ω

• Actions in Ai are chosen, defining an action profile a = (ai)i.

• The payoff for player i is gi(a,k).

A pure strategy for player i in the Bayesian game is a mapping fi from Ω to Ai that depends
only on the information partition element of player i: for every ω and ω ′ such that ω ′ ∈ Pi(ω),
ω ′ = fi(ω). We let Σi be the set of such strategies.

A behavioral strategy for player i is a Pi-measurable mapping σi from Ω to ∆(Ai).

When the state of nature is ω and the profile of strategies is f = ( fi), the chosen profile of
actions is f (ω) = ( fi(ω))i, and the state of nature is κ(ω). The corresponding payoff to player
i in the game is gi( f (ω),κ(ω)). According to the probability distribution p, the expected payoff
for player i corresponding to the profile of strategies f = ( fi) is

γi( f ) = Epgi( f (ω),κ(ω))

Definition 2.1. A Bayesian-Nash equilibrium of the game GI is a Nash equilibrium of the
game where player i’s strategy set is Σi and player i’s payoff function is γi.

Proposition 2.2 (Existence). Assume that Ω and the actions sets Ai are all finite. Then the
Bayesian Game GI has a Nash equilibrium in behavioral strategies.

Proof. GI has a finite number of strategies per player. So, by Nash’s existence theorem, it has
a Nash equilibrium in mixed strategies, where a mixed strategy is a randomization over pure
strategies. By Kuhn’s theorem, mixed strategies are equivalent to behavioral strategies, hence
the existence of a Nash equilibrium in behavioral strategies.
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3 Example: Do you really want to defect?

Let us consider the two following two games which differ when player 2 plays D.

C D
C 0,−2, −10,−1
D −1,−10 −5,−5

GL

C D
C 0−2, −10,−7
D −1,−10 −5,−11

GR

GL is played with probability p, and GR is played with probability 1− p.

1. Assume both players know which game is played. Then, the information structure
can be represented as follows: Ω = {ωL,ωR}, K = {L,R}, p(L) = p, p(R) = 1 − p,
P1(ω) = P2(ω) = {ω} for each ω , κ(ωL) = L, κ(ωR) = R. The payoff structure is given
by the payoff matrices above. In the Bayesian game, player 1 has two strategies C and D,
and player 2 has two strategies L and R. The Bayesian game in strategic form is:

C D
C 0,−2, −10,6p−7
D −1,−10 −5,6p−11

No player informed

We only solve for Bayesian equilibria in pure strategies. D for player 1 is a best-response
to D, and D for player 2 is a best response to D if p≥ 1

6 . So for p≥ 1
6 , (D,D) is a Bayesian

Nash equilibrium. C for player 1 is a best-response to C, and C is a best-response for
player 2 to C if p ≤ 5

6 , so for p ≤ 5
6 , C,C is a Bayesian Nash equilibrium.

2. Assume that only player 2 knows what game is played. The information structure is as
before, except that P1(ωL) = P1(ωR) = {ωL,ωR}. The payoff structure is as before. In the
normal form, player 1 has the same strategy set as before. Player 2 has now 4 strategies,
since a different action can be chosen in GL and in GR. We label these strategies as
CC,CD,DC,DD, where the first coordinate indicates the action chosen in GL, while the
second coordinates indicates the action chosen in GR. The payoff matrix is now:

CC CD DC DD
C 0,−2, 10p−10,5p−7 −10p, p−2 −10,6p−7
D −1,−10 4p−5, p−11 −4p−1,5p−10 −5,6p−11

Player 2 informed

Player 2 has a dominant strategy: DC. This can be checked directly on the payoff matrix,
or with a simple reasoning, D is dominant in GL, and C is dominant in GR, since the
payoff in the combined game is a convex combination of the payoff in GL and in GR, DC
is dominant is the Bayesian game. We check that C is a best-response to DC if p ≤ 1

6 ,
and D is a best-response if p ≥ 1

6 . Thus, if p > 1
6 , (D,DC) is the unique Bayesian Nash
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equilibrium, and if p < 1
6 , (C,DC) is the unique Bayesian Nash equilibrium. If p = 1

6 ,
there is a continuum of Bayesian Nash equilibria, in which player 1 randomizes between
C and D, and player 2 plays DC.

Remark that the strategy C of player 2 in the game in which no player is informed corresponds
to the strategy CC in which the game in which player 2 is informed, and the same holds for D
versus DD. More generally, a strategy in a game with less information can always be played if
the player has more information, since the extra information can always be ignored.

4 Example: Adverse selection in car sales

A car may be of good quality (G), or bad quality (B), with equal probabilities (1/2 each).

The seller may decide to sell (action S), or not not to sell (action NS). The buyer may accept to
buy (B), or refuse to buy (NB). The price for the car is fixed, and is equal to some value p.

The utility for a car of good quality is 3 for the seller, and 4 for the buyer (units in thousand
british pounds). A car of bad quality is worth 0, both to the buyer and to the seller.

Both Informed Assume that both players are informed of the quality of the car. Describe the
situation as a Bayesian Game. Solve, depending on the value of p.

None Informed Assume that no player knows the quality of the car. Describe the situation as a
Bayesian Game. Solve, depending on the value of p.

Information asymmetry Assume that only the seller is informed of the car’s quality. Describe
the situation as a Bayesian Game. Solve, depending on the value of p.

5 Betting

5.1 A betting example

There are three states of nature, ω1,ω2,ω3. Each state is equally likely. Player 1’s information
partition is

P1 = {{ω1,ω2}{ω3}}
And Player 2’s information partition is

P2 = {{ω1},{ω2,ω3}}

Players 1 and 2 each decide if they accept a bet (action B) or refuse the bet (action R). If both
accept the bet, a transfer takes place depending on which state of nature is realized: player 1
pays 1 £ to player 2 in state ω1, receives 2 £ from player 2 in state ω2, and pays 5 £ to player 2
in state ω3.
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What are the Bayesian Nash equilibria of this game?

5.2 No-Trade Theorem

The previous example shows that in a betting game where each player can refuse the bet, at
equilibrium the sum of expected payoffs is the same as if betting never takes place. This result
extends to a wide range of situations that can model betting, poker playing, or trading in the
stock market.

The set of player I is arbitrary. Consider an arbitrary payoff structure I , and a payoff structure
G. The set of actions of player i is Ai the set of states of nature is K, and player i’s payoff
function is gi. We make two assumptions on the payoff structure.

The first assumption is that every player can opt out: There exists a strategy ni ∈Ai such that, for
every k ∈ K and a−i ∈ A−i (A−i represents ∏ j ̸=i A j), gi(ni,a−i,k) = 0. By playing the strategy
ni, player i guarantees a payoff of 0 no matter k and the actions of the other players.

The second assumption is no gains from trade: For every k,a, ∑i gi(a,k)≤ 0. This assumption
distinguishes the betting example from, for instance, the car sale example. According to this
assumption, any gain by a player must correspond to an at least equivalent loss by the other
players.

Theorem 5.1 (No Trade Theorem). If a Bayesian game is such that every player can opt out and
there are no gains from trade, then, at every Bayesian Nash equilibrium, the expected payoff to
every player is 0.

Proof. Let f be a Bayesian Nash equilibrium, and let u = (ui)i be the corresponding vector of
expected payoffs. The no gains from trade condition implies that

∑
i

ui = ∑
ω

p(ω)∑
i

gi(( fi(ω))i,k)≤ 0.

On the other hand, if a player i plays the constant strategy ni (for every ω , play ni at ω), then
this player obtains 0 in the Bayesian game no matter what the other’s strategies are. Therefore,
the expected equilibrium payoff of each player i is at least 0:

for every i, ui ≥ 0.

The two conditions imply together that ui = 0 for every i.

6 Multi player case

This section provides insights on the value of information in the multi-player case. Since not
all the material is covered in lectures, this is meant for your own reading and thinking if you’re
interested. Section 6.1 provides an example in which the value of information is negative,
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Section 6.2 shows that the value of information is always non-negative in a zero-sum game,
and Section 6.3 offers to understand the value of information as the value of possessing more
strategies.

6.1 General Games

We first define what a more informative information structure is, using the partition approach.

Definition 6.1. The information structure I is more informative than the information structure
J for player i if J can be obtained from I by replacing i’s information partition by a coarser
information partition.

In general games, is a player better off when his information partition is finer?

Example 6.2. Consider an investment game. There are two investment opportunities, A and B.
Only one of them is good, and the probabilities are 1/2 on each one being good. Two firms, I
and II, can invest in either A, or B. Firm I invests, and firm II invests after observing firm I’s
choice. The payoff for a firm investing in the good project is 3 if the other firm doesn’t invest
in the good project. If both invest in the good project, the payoff to each firm is 1. A firm not
investing in the good project gets a payoff of 0.

No information No firm is informed of which project is the good one. Solve the game. What are the
equilibrium payoffs?

Firm I informed Assume firm I, but not firm II, is informed of which project is good. Solve the game.
What are the equilibrium payoffs?

Secret information Assume that with probability p, firm I is not informed of which project is good. With the
remaining probability 1− p, firm I knows (with certainty) which project is good. Firm II
doesn’t know whether firm I is informed or not. Represent the information structure, and
firm I’s corresponding statistical experiment. Inside of this framework, is firm I better off
when informed, or not informed?

6.2 Zero-Sum Games

A payoff structure with two players 1,2 is zero-sum if for every state of nature k and action pairs
a1,a2, we have g1(k,a1,a2)+g2(k,a1,a2) = 0.

An information structure I and a zero-sum payoff structure G define a zero-sum game with
incomplete information GI . We let Val(I ,G) denote the value of this game.

The following proposition shows that the value of information is always non-negative in zero-
sum games.
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Proposition 6.3. Let I be more informative for player 1 than J , or less informative for player
2, then, for every zero-sum payoff structure G:

Val(I ,G)≥Val(J ,G)

Proof. Application of the minmax theorem.

6.3 More Information as More Strategies

Let I and J be two information structures such that player i is more informed in I than in
J , and let G be any payoff structure.

For j ̸= i, player j’s strategy sets are the same in GI and in GJ . For player i, any strategy in
GI can be identified to a strategy in GJ .

Hence, more information implies more strategies.

Can we find a converse to this result?

Example 6.4. Consider the following games G and G′

C D
C 3,3 −1,2
D 4,−1 0,0

G

C D
C 3,3, −1,2

G′

Player 1 has more strategies in G than in G′. Can we construct two information structures I
and J , and a payoff structure G, such that player 1 is more informed in I than in J , GI can
be represented by G, and GJ can be represented by G′?

Hint: Use a continuum of states of nature. The state of nature is a “key” needed for player 1 to
play the D strategy.

7 Repeated zero-sum games, optimal information revelation

In this section we study zero-sum repeated games and incomplete information on one side. The
study is through examples, for the general theory, we refer the reader to the books:

• Repeated Games with Incomplete Information, by Aumann and Maschler (1995)

• A First Course on Zero-Sum Repeated Games, by Sorin (2002)

• Repeated Games, by Mertens, Sorin and Zamir (2015)
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Consider two equally likely states of nature, k ∈ {k1,k2}. P1, the maximizer, is informed of the
k. P2, the minimizer, isn’t.

A game takes place in stages between P1 and P2. At the end of each stage, P2 observes P1’s
action in the previous stage (Not her own payoff, which is kept in a secret bank account). We
study optimal information revelation by P1.

7.1 First example

Assume the payoff functions to P1 in states k1 and k2 are given by:

L R
T 1 0
B 0 0

k1

L R
T 0 0
B 0 1

k2

We analyse the situation through the following questions:

1. Assume the game with incomplete information is played only once. What are the strate-
gies for P1? For P2?

2. What is the optimal strategy for P1 in the one-shot Bayesian game? What is the corre-
sponding minmax payoff?

3. Assume now that P1 is using a completely revealing strategy: a strategy that plays T in
state k1, and B in state k2. After observing action T , what is the posterior of P2 on the
state of nature? Same question after observing B.

4. If P1 uses a completely revealing strategy and P2 plays a best response to it, what is the
best payoff that P1 can expect in subsequent repetitions of the game? (in stage 2, stage 3,
and so on).

5. Now consider non-revealing strategies of P1, which uses the same mixed strategy in states
k1 and k2. What is the best non-revealing strategy for P1? What is P1’s expected payoff
in stage 1 if he uses this non-revealing strategy and P2 plays a best response? What about
stage 2 onwards (P1 uses the same non-revealing strategy at every stage)?

6. Is it better for P1 to use a completely revealing strategy, or a non-revealing one?

7.2 Second example

Assume now the payoffs are given by:
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L R
T −1 0
B 0 0

k1

L R
T 0 0
B 0 −1

k2

Same questions as before.

7.3 Third example

Finally consider the payoff functions to P1 in states k1 and k2 given by:

L M R
T 4 0 2
B 4 0 −2

k1

L M R
T 0 4 −2
B 0 4 2

k2

• Answer the same questions as before.

• Consider the following partially revealing strategies of P1: If the state is k1, with proba-
bility 3/4 play T forever, and with probability 1/4, play B forever. If the state is k2, with
probability 3/4 play B forever, and with probability 1/4, play T forever. Conditional on
observing T in the first stage, what is P2’s posterior belief on the states of nature? What
is P2’s best response to P1’s strategy from stage 2 on? Same questions when P2 observes
P1 playing B in the first stage.

• What expected average payoff per stage does the partially revealing strategy guarantees
to P1 in the long-run?

• What is the best strategy for P1, a non revealing strategy, a completely revealing strategy,
or a partially revealing strategy?

7.4 A common analysis of all 3 cases

For each of the payoff structures:

• Assume that the state of nature is k1 with probability p and k2 with probability 1− p, and
that P1 plays a non-revealing strategy.

• Graph the value u(p) of the one-shot Bayesian game as a function of p. Draw the function
(cav u)(p), the smallest concave function that is larger or equal than u.
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Comment on the optimal revelation of information.

Figure 1: First example revisited

Figure 2: Second example revisited
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Figure 3: Third example revisited

The optimal information revelation corresponds to a splitting of the initial belief p into a random
belief q with the constraint that Eq = p.
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