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Game Theory

Lecture notes. Modeling Information and Knowledge

Information is a central concept in Game Theory. It is important when one wants to explore
the foundations of equilibrium concepts (what do players need to know in order to play a Nash
equilibrium, or a correlated equilibrium for instance?), or more simply when we are interested
in agents who face some uncertainties about the strategic situation they face. Examples of such
uncertainties include.

• Negotiation: objectives.

• Firms: cost functions

• Sale of a used car: the quality of the car

• Auctions: valuations of the bidders

1 States of nature and Knowledge

1.1 Possibility Correspondences

We introduce a way to model incomplete information. This is done through a space of “states
of the world”. Each state of the world describes a resolution of all uncertainties, including each
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player’s preferences, as well as each player’s information. We start by describing a player’s
information at each state of the world. Ω is the (finite) set of states of the world.

I denotes the finite set of players, i ∈ I denotes an individual player.

Definition 1.1. An possibility correspondence for player i a map Pi : Ω 7→ P(Ω).

The interpretation of Pi is that, at ω , Pi(ω) is the set of states that player i considers as possible.
Example 1.2. In the first example, there are two states of the world corresponding to different
weather conditions, and the agent knows which state realizes.

Ω = {rain,shine}, Pi(rain) = {rain}, Pi(shine) = {shine}.

In the second example, the agent doesn’t know which state realizes.

Ω = {rain,shine}, Pi(shine) = Pi(rain) = {rain,shine}.

In the third example, there are 4 states of the world, two in which the agent knows the weather,
and two in which the agent doesn’t know the weather.

Ω = {rain1,shine1, rain2,shine2}. Pi(rain1) = {rain1}, Pi(shine1) = {shine1}, Pi(shine2) =
Pi(rain2) = {rain2,shine2}.

The possibliity correspondences of Example 1.2 satisfy the two important properties below.

Non-delusion ω ∈ Pi(ω).

Introspection If ω ′ ∈ Pi(ω) then Pi(ω
′) = Pi(ω)

The interpretation of non-delusion is that the agent never excludes the truth. To understand
introspection, imagine that the agent i knows Ω, and Pi. At state ω , the agent knows the value
of Pi(ω) (he knows which states he excludes and which he considers as possible). Then, the
agent has the possibility to check all states ω ′, and excludes the one for which Pi(ω

′) differs
from Pi(ω).

A possibility correspondence Pi is partitional if there exists a partition of Ω such that, Pi(ω) is
the element of the partition that contains ω . In the previous example, all possibility correspon-
dences are partitional.

The following Theorem draws the connection between non-delusion and introspection, and
partitional possibility correspondences.

Theorem 1.3. A possibility correspondence is partitional if and only if it satisfies Non-delusion
and Introspection.
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Proof. First assume that Pi satisfies Non-delusion and Introspection. Let P be the partition
of Ω such that ω,ω ′ are in the same element of P if and only if Pi(ω) = Pi(ω

′), and let
P(ω) = {ω ′,Pi(ω

′) = Pi(ω)} denote the element of P that contains ω . We prove that Pi(ω) =
P(ω). According to Introspection, if ω ′ ∈ Pi(ω) then Pi(ω

′) = Pi(ω), hence ω ′ ∈ P(ω). If
ω ′ ∈ P(ω), then Pi(ω) = Pi(ω

′) and Non-delusion implies ω ′ ∈ Pi(ω
′), hence ω ′ ∈ Pi(ω).

Now assume that Pi is partitional, i.e. Pi(ω) = P(ω) for some partition P of Ω. Pi is Non-
delusional, since ω ∈ P(ω), it satisfies Introspection since P(ω) = {ω ′,P(ω) = P(ω ′)}.

Example 1.4. There are 100 states of nature, numbered 00 to 99. The agent can read the first
digit, but not the second one. What is Pi(ω)? Does it verify non-delusion? Introspection?

Example 1.5. There are 100 states of nature, numbered 00 to 99. The agent reads both digits,
but the other way round. What is Pi(ω)? Does it verify non-delusion? Introspection?

Example 1.6. There are two states of nature G and B, standing for “good news” or “bad news”.
The agent learns the state of nature, but forgets the bad news, and remembers only the good
news. Does the possibility correspondence satisfy non-delusion, introspection?

Exercise 1.7. There are two states of nature G and B, standing for “good state” or “bad state”.
The agent always believes that the state is good. Does the possibility correspondence satisfy
non-delusion, introspection?

1.2 Knowledge

We relate possibility correspondences to the notion of knowledge. An event E is a subset of Ω.
The event E is “known at state ω” if Pi(ω)⊆ E. KiE is the event that E is known:

KiE = {ω,Pi(ω)⊆ E}

KiE is thus the set of states ω at which all possibilities considered as possible by the agent
belong to E ; in all these possibilities E is true, therefore the agent “knows E”.

Example 1.8. Consider the three possibility correspondences of Example 1.2. Let E be the event
that represents the shiny weather.

In the first possibility correspondences, E = {shine}, and KiE = {shine}.

In the second possibility correspondence, E = {shine} and KiE = /0.

In the third possibility correspondence, E = {shine1,shine2}, and KiE = {shine1}.
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The following properties seem “reasonable” properties of the knowledge operator associated to
a rational agent. These properties can be understood as characteristics of the agent’s reasoning
abilities.

Deductive Closure Ki(E ∩F) = KiE ∩KiF : an agent knows E and F if and only if this
agent knows E and knows F .

Truth KiE ⊆ E: E must be true if E is known

Positive Introspection KiE ⊆ KiKiE: If the agent knows E, he knows that he knows E

Negative Introspection ¬KiE ⊆ Ki¬KiE: If E is not known, then it is known that E is not
known.

Proposition 1.9. Every knowledge operator that is derived from a partitional possibility corre-
spondence satisfies deductive closure.

Instead of modeling information with possibility correspondences, we could have started right
away using knowledge operators Ki. Are the two approaches equivalent?

We already know how to associate a knowledge operator to a possibility correspondence, can
we also associate a possibility correspondence to a knowledge operator? Suppose we were to
observe the knowledge operator Ki of agent i. Could we explain this knowledge as coming from
a possibility correspondence?

Say that Ki is derived from Pi if for every event E, KiE = {ω,Pi(ω) ⊆ E}. What knowledge
operators Ki are the ones derived from possibility correspondences Pi? We know how to char-
acterize Ki from Pi. Is there a way we can characterize Pi from Ki?

The following proposition provides a simple answer. According to the first point Ki is associated
to some Pi if and only if Ki satisfies deductive closure. If Ki satisfies deductive closure, then
the corresponding Pi is given by point 2, which says that Pi(ω) is the intersection of all events
known at ω . By deductive closure, this is equivalent to saying that Pi(ω) is the smallest event
known at ω .

Proposition 1.10. Let Ki be the agent’s knowledge operator and Pi be a possibility correspon-
dence. Then Ki is associated to Pi if and only if

1. Ki satisfies Deductive Closure

2. For every ω:
Pi(ω) =

⋂
E s.t. ω∈KiE

E
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Proof. First take Ki and Pi such that KiE = {ω,Pi(ω) ⊆ E} for every E. For every E, F ,
Ki(E ∩F) = {ω,Pi(ω)⊆ E ∩F}= {ω,Pi(ω)⊆ E}= {ω,Pi(ω)⊆ F}= KiE ∩KiF . Hence Ki
satisfies Deductive Closure. We now prove Pi(ω) = ∩E s.t. ω∈KiEE. To show ⊆, if E is such that
ω ∈ KiE, then Pi(ω)⊆ E. To show ⊇, note that ω ∈ KiPi(ω), hence

⋂
E s.t. ω∈KiE E ⊆ Pi(ω).

Now consider Ki that satisfies Deductive Closure, we and let Pi(ω) = ∩E s.t. ω∈KiEE for every
ω . We need to prove that for this particular Pi, KiE = {ω,Pi(ω)⊆ E}, hence we want to prove:

KiE =

{
ω,

⋂
E ′ s.t. ω∈KiE ′

E ′ ⊆ E

}

For ω ′ ∈ KiE, we have ∩E ′ s.t. ω ′∈KiE ′E ′ ⊆ E, hence ω ′ ∈ {ω,∩E ′ s.t. ω∈KiE ′E ′ ⊆ E}.

Now assume ω is such that ∩E ′ s.t. ω∈KiE ′E ′ ⊆ E. Deductive Closure shows that the intersection
of all events known at ω is also known at ω: ω ∈ Ki(∩E ′ s.t. ω∈KiE ′E ′). Deductive Closure also
implies that if A ⊆ B, KiA = KiB∩Ki(A∩ B) ⊆ KiB. Applying this to A = ∩E ′ s.t. ω∈KiE ′E ′,
B = E, we deduce ω ∈ KiA ⊆ KiB = KiE.

Proposition 1.10 shows that every Ki that satisfies Deductive Closure can be derived from some
Pi. Furthermore, this Pi is unique, and given by the formula in 2. We can thus either work
with Ki that satisfies Deductive Closure, or, equivalently, using the corresponding possibility
correspondence Pi.

Theorem 1.11. Assume that Ki is associated to Pi. Ki verifies Truth if and only if Pi satisfies non-
delusion. Ki verifies Positive Introspection and Negative Introspection if and only if Pi verifies
Introspection.

Proof. Truth: Assume Pi satisfies Non-Delusion, if ω ∈ KiE then ω ∈ Pi(ω) ⊆ E, hence Ki
satisfies Truth. If Ki satisfies Truth, ω is in all events E such that ω ∈ KiE, hence in Pi(ω) =
∩E s.t. ω∈KiEE, which is Non-Delusion.

Assume Pi verifies Introspection. To prove that Ki satisfies Positive Introspection, let ω ∈ KiE,
i.e. Pi(ω) ⊆ E. We need to show that ω ∈ KiKiE, i.e. Pi(ω) ⊆ KiE. Let ω ′ ⊆ Pi(ω), then
Pi(ω

′) = Pi(ω) ⊆ E, which shows that ω ′ ∈ KiE, hence the result. To prove that Ki satisfies
Negative Introspection, assume ω ∈ ¬KiE, i.e. Pi(ω) ̸⊆ E. We want to prove ω ∈ Ki¬KiE,
i.e. Pi(ω)⊆ ¬KiE. For every ω ′ ∈ Pi(ω), Pi(ω

′) = Pi(ω) ̸⊆ E, which is the desired result.

Now assume that Ki satisfies Positive Introspection and Negative Introspection. According to
Positive Introspection, Pi(ω) ⊆ E means that ω ∈ KiE ⊆ KiKiE, hence Pi(ω) ∈ KiE, which
means that for every ω ′ ∈ Pi(ω), Pi(ω

′) ⊆ E. Applying this to E = Pi(ω) shows that for ev-
ery ω ′ ∈ Pi(ω), Pi(ω

′) ⊆ Pi(ω). According to negative Introspection, Pi(ω) ̸⊆ E, means that
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ω ∈ ¬KiE ⊆ Ki¬KiE, thus for every ω ′ ∈ Pi(ω), Pi(ω
′) ̸⊆ E. We want to prove that for ev-

ery ω ′ ∈ Pi(ω), Pi(ω
′) ⊇ Pi(ω). Assume by contradiction that Pi(ω

′) ̸⊇ Pi(ω). The Negative
Introspection property applied to E = Pi(ω

′) gives Pi(ω
′) ̸⊆ Pi(ω

′), a contradiction.

Exercise 1.12. This is taken from Conan Doyle’s famous novel “Silver Blaze”.

A dialog takes place between the famous detective Sherlock Holmes and the Scottland Yard
detective Gregory:

Gregory: Is there any other point to which you would wish to draw my attention?

Holmes: To the curious incident of the dog in the night-time.

Gregory: The dog did nothing in the night-time.

Holmes: That was the curious incident.

From noticing that the dog did not bark in the night-time, Holmes infers that no one intruded in
the house. On the other hand, Gregory, who was able to make the same observations as Holmes
did, failed to reach this conclusion. Had the dog barked, Watson would certainly have inferred
that someone intruded.

Model Holmes and Watson’s knowledge. Do they satisfy non-delusion, positive introspection,
negative introspection?

2 Interactive knowledge

The set of states at which E is mutually known (known by all players) is

KE = ∩iKiE

Now consider the common knowledge operator K. What can we say about the poroperties that
it satisfies, based on the properties satisfied by each of the Ki?

Proposition 2.1. If each Ki satisfies Deductive Closure, then K also satisfies deductive closure.
If at least one Ki satisfies Truth, then K satisfies Truth.
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Proof left as an exercise.

The first part of the Theorem is quite useful. If each Ki can be derived from a possibility
correspondence Pi, then K can also be derived from a possibility correspondence, call it P. In
many examples, it is in fact easier to describe P than K, as P requires the description of an
subset of Ω for each element of Ω, but K requires the description of a subset of Ω for each
subset of Ω.

On the other hand, even if each K does not inherit properties of Positive and Negative introspec-
tion from the individual Ki’s. Consider the following example:

Exercise 2.2. Ω = {1,2,3,4,5}. P1 = {{1},{2,3},{4,5}}, P2 = {{1},{2},{3,4},{5}}.

1. Let E = {3,4,5}. At which states is E mutually known? At which states is it mutually
known of order 2? At which states is it commonly known?

2. Same questions for F = {2,3,4,5}.

3. What events are mutually known at in ω = 2?

4. What events are mutually known of order 2 at ω = 2?

5. What events are commonly known at ω = 2?

It can be seen in the example that P(ω) = ∪iPi(ω). This is in fact logical “if one person in the
group cannot exclude a state ω ′, then we cannot say that the group commonly knows that the
state is not ω ′”.

We now move from mutual knowledge to mutual knowledge of higher orders. The set of states
at which all players know that all players know that they know . . . that they know (k times) E is

KkE = K . . .KE

It can be easily seen that Kk satisfies deductive closure if each Ki does. What can be said
about the possibility correspondence Pk associated to Kk? It is left as an exercise to show the
following:

Pk(ω) = {ω
′,∃ω1, . . . ,ωk,ω1 = ω,ωk = ω

′,∀1 ≤ i ≤ kωi+1 ∈ P(ωi}

This shows that Pk(ω) is the set of states ω ′ which can be reached from ω using a chain of
lengths k, where the chain is obtained by following a possibility correspondence Pi at each
iteration.
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The set of states at which E is common knowledge is

CKE = ∩kKkE

Again, Common Knowledge satisfies deductive closure if each Ki does. Hence in this case it
can be derived from a possibility correspondence, call it CP. CP can be derived as follows:

CP(ω) = {ω
′,∃k,ω1, . . . ,ωk,ω1 = ω,ωk = ω

′,∀1 ≤ i ≤ kωi+1 ∈ P(ωi}

So, CP(ω) is now the set of elements ω ′ that can be reached from ω using a chain, where the
chain can be of arbitrary length. In particular two consecutive chains can be attached to create a
new chain, which implies a form of transitivity: ω ′ ∈CP(ω) and ω ′′ ∈CP(ω ′) together imply
ω ′′ ∈CP(ω).

The following result is left as an exercise.

Theorem 2.3. Assume each Pi is partitional, and CK represents common knowledge. Then, CK
is derived from a partitional possibility correspondence CP.

When each Pi is partitional, CP is the finest partition that is as coarse as each of the Pi’s. This is
also known as the “meet” of the partitions Pi’s.

2.1 Beliefs and consensus

When agents take decisions under uncertainty, not only the set of possible states of nature
matters to them, but also the relative likelihood of these states. We introduce probabilistic
beliefs the agent holds on possible states of nature.

Before receiving any information, agent i holds a belief pi on Ω. Thus, pi(ω)≥ 0 is the proba-
bility that the agent assigns to the stage ω ∈ Ω, and ∑ω pi(ω) = 1. The probability distribution
pi is called agent i’s prior belief on Ω. For an event E, the prior belief that E realizes is given
by pi(E) = ∑ω∈E pi(ω).

Once receiving information, the agent does not consider all states in Ω as being possible, but
only those in pi(ω). Given this information, the agent assigns probabilities to states ω ′ ∈ Ω

according to Bayes’s rule:

pi(ω
′|Pi(ω)) =

p({ω ′}∩Pi(ω))

p(Pi(ω))
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Note that if ω ′ ̸∈ Pi(ω), then pi(ω
′|Pi(ω)) = 0. For an event E ⊆ Ω,

pi(E|Pi(ω)) =
p(E ∩Pi(ω))

p(Pi(ω))

The probability distribution pi(·|Pi(ω)) is called agent i’s posterior probability distribution at
state ω . The term prior thus refers to before receiving information, while posterior means after
this information is received.

Now consider different agents. In principle, agents i and j could hold different prior proba-
bilities pi and p j on Ω. We often make the assumption that before receiving any information,
agents hold the same probabilistic beliefs. This assumption, called the common prior assump-
tion, means that there exists a probability distribution p such that every agent has prior p.

As shown by the next example, two agents can have same priors on Ω, but different posterior
probabilities.

Example 2.4. Ω = {1,2,3,4,5}. P1 = {{1},{2,3},{4,5}}, P2 = {{1},{2},{3,4},{5}}.

Let p be uniform on Ω, and E = {3,4,5}.

• p(E|P1(ω)) takes the values (0, 1
2 ,

1
2 ,1,1) in the different states 1 . . . 5,

• p(E|P2(ω)) takes the values (0,0,1,1,1).

We like to ask whether it is possible that agent’s posterior are known to each other, while they
differ. The answer is yes, as shown by our next example.

Example 2.5. Let Ω = {a1,a2,a3,b1,b2,b3,c1,c2,c3} and p is uniform on Ω.
P1 = {{a1,a2,a3},{b1,b2,b3,c1,c2,c3}}, P2 = {{a1,a2,a3,b1,b2,b3},{c1,c2,c3}}.
Consider the event E = {a1,a2,b1,c1,c2,c3}. p(E|Pi(ω)) takes the values

(
2
3
,
2
3
,
2
3
,
2
3
,
2
3
,
2
3
,
2
3
,
2
3
,
2
3
)

for player 1, and

(
1
2
,
1
2
,
1
2
,
1
2
,
1
2
,
1
2
,1,1,1)

for player 2.

In states {a1,a2,a3}, player 1 knows that player 2’s posterior on E is 1
2 , player 2 knows that

player 1’s posterior is 2
3 . Nevertheless, player’s beliefs on E disagree at these states.

Note that in that example, in states where player’s posterior probabilities disagree and are mu-
tual knowledge, these posterior probabilities are not common knowledge. In the next example,
when posterior probabilities are common knowledge, they are the same.
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Example 2.6. Ω= {1,2,3,4,5,6,7}. P1 = {{1,2,3},{4,5},{6,7}}, P2 = {{1},{2},{3},{4,5,6,7}}.

Let p be uniform on Ω, E = {3,5,6}. What are p(E|P1(ω)) and p(E|P2(ω)) in all states ω?
When is p(E|P1(ω)) common knowledge? When is p(E|P2(ω)) common knowledge?

As stated by the next (important) theorem, if players have common priors, and if their posterior
probabilities are common knowledge, then these posterior probabilities are identical. The com-
mon interpretation of that result is that players can’t agree to have different opinions, they can’t
agree to disagree.

Theorem 2.7 (We can’t agree to disagree). Assume each player’s information is partitional,
and let E be an event. Assume that, at some state ω , each agent’s belief about E is commonly
known among all players. Then, all these posterior beliefs are equal.

Proof. Let qi = p(E|Pi(ω)) be agent i’s posterior belief on E at ω . Let M(ω) be the element of
the common knowledge partition that contains ω . Let Ei = {ω ′, p(E|Pi(ω

′) = qi)}. Since Ei is
common knowledge at ω , ω ∈ Ei, M(ω)⊆ Ei: agent i’s belief is constant on M(ω).

P(E|Pi(ω
′)) = qi for ω

′ ∈ M(ω)

Decompose M(ω) as a union of elements of the partition of player i: M(ω) = Pi,1 ∪ . . .Pi,k.
Then,

P(E|M(ω)) = ∑
1≤k′≤k

P(Pi,k′|M(ω))P(E|Pi,k′) = ∑
1≤k′≤k

P(Pi,k′|M(ω))qi = qi.

Since this is true for every player all player’s posterior beliefs at ω are the same.

The next example shows that it can be commonly known that two players have different poste-
rior beliefs about an event, as long as the value of these beliefs are not commonly known.

Example 2.8. Let Ω = {a,b} with the uniform probability p. Player’s information partitions are
P1 = {{a,},{b}} and P2 = {{a,b}}. For the event E = {a}, p(E|P1(a))= 1 and p(E|P1(b))= 0,
whereas p(E|P2(ω)) = 1

2 for every ω .

Exercise 2.9. Show that it cannot be commonly known that one player as a posterior belief
strictly larger than another player.

We have already show in an example that the theorem fails if we replace “commonly known”
by “mutually known”. Similarly, it can be shown that the theorem fails if “common knowledge”
is replaced by “mutually known at order k”, for any value of k.
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3 Examples and riddles

Example 3.1. Cheryl has two friends, Albert and Bernard. She gives them a list of 10 possible
dates for her birthday;

• May 15th 16th 19th,

• June 17th 18th,

• July 14th 16th,

• and August 14th 15th 17th.

Then she tells the month to Albert, and the day of the month to Bernard.

Albert then says: “I don’t know when Cheryl’s birthday is, but I know that Bernard doesn’t
know either.”

Bernard replies: “In the beginning, I didn’t know when Cheryl’s birthday was, but now I do.”

Finally Albert concludes: “Then I know her birthday too.”.

Can you guess Cheryl’s birthday too?

Example 3.2. 100 monks live together in a monastery in very harsh conditions. They are not
allowed to talk or communicate in any form. They are not allowed to touch their own body, or
look at themselves in a mirror. They pray all day long, except for supper when they all meet in
the communal dining room for their only meal of the day.

One day, their leader exceptionally breaks the silence to make an announcement. Some monks
are sick, and their disease creates a red spot on their forehead. The disease is not contagious, but
sick members are requested to leave the order. The leader does not designate the sick members,
they have to understand on their own that they are sick and must leave.

7 days later, after the meal, without any other remark, comment or announcement by their
leader, all sick monks silently leave the community.

How many sick members where there and how did they know they were sick?

Example 3.3. Three students stand one behind the other. A professor comes to the room with
2 white hats and 3 black hats. The professor puts one hat on the head of each student, without
telling them the colour.

Each student sees the hats of other students in front of him. The professor says that a student
who can guess the colour of his hat gets the maximal grade.
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The last student, who sees the hats of both others, says: ”I don’t know the colour of my hat.”

Then, the student in the middle, who sees the hat of the one in front of him, says: ”Neither do
I.”.

Finally, the student in front of the line says: ”I know the colour of my hat.”.

Can you guess the colour of each of the student’s hats?
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