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1. Introduction. In many strategic situations, a group of players may find it beneficial to coordinate their
action plans in a way that is hidden from other players. The manager of a sport team devises coordinated plans
for the team members, and generals of allied armies need to keep their coordinated plans secret from enemies.
On the Internet, coordinated attacks of systems (e.g., by viruses) are known to be much more dangerous than
uncoordinated attacks. The management of a firm coordinates the actions of the units of production in a way
that is hidden from the competitors.

Coordination of a group of players needs to rely on the observation of a common signal by its members. This
signal can arise from an external correlation device (Aumann [2]), or be the result of communication between
the players in the group (Forges [5]). In the model of repeated games with imperfect monitoring, each player
observes a signal that depends stochastically on chosen actions (deterministic signals is a particular case); the
signals may be correlated. These games feature both correlated signals and communication possibilities since
actions may be used as messages.

This article explores the possibilities of secret correlation between team members in a repeated game with
imperfect monitoring. In our model, two teams are matched against each other. Each member i of team I has an
action set Ai. Team II is viewed as single player with action set B. At each stage, team II observes a (possibly
random) signal s about I’s action profile a, drawn according to some probability distribution q�s � a�. Team I’s
members are informed of a, s, and possibly of II’s actions (our result covers the cases in which team I has perfect,
imperfect, or no observation of II’s choice). The payoff to team I is a function of both team’s action choices. In
order to stress the value of secret correlation between team members, we assume that team II’s goal is to minimize
team I’s payoff. Since team I has more information than team II about action choices, this extra information can
be used as a correlation device for future actions. Our model allows us to study the optimal tradeoffs for team I
between generation of signals for future correlation and use of correlation for present payoffs.

Our main result is a characterization of the best payoff that the team can guarantee against outside players as
either the horizon of the game grows to infinity, or the discount factor goes to one. We emphasize three reasons
why we believe characterizing the maxmin value is important:

First, such characterizations are important for the general study of repeated games with imperfect monitoring
because they provide the individually rational levels. Some generalizations of the Folk Theorem from the perfect
monitoring case to imperfect monitoring, such as Renault and Tomala [20] and Hörner and Olszewski [12] show
that the set of equilibrium payoffs of repeated games is the set of feasible and individually rational payoffs,
but do not characterize the individually rational levels. Such a characterization completes these studies, thus
providing full descriptions of the sets of equilibrium payoffs of the repeated games.

Second, von Stengel and Koller [22] proved that, in finite games where a team of players is matched against
one outside player, the maxmin payoff is a Nash payoff. Furthermore, it is the most natural Nash payoff to
select since team members can guarantee this value. Combined with our result, we know that the maximal Nash
payoff to the team in the repeated game with imperfect monitoring is the maxmin we characterize.

Finally, the maxmin of the repeated game measures how successful team I is in correlating secretly its actions
from outside players. Indeed, when no correlation is possible the maxmin of the repeated game coincides with
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the maxmin in mixed strategies of the stage game. When full correlation is achievable, this maxmin equals the
generally higher maxmin in correlated strategies of the stage game. In general, only partial correlation may be
achievable; the maxmin of the repeated game may lie between these two values. The study of the endogenous
emergence of secret correlation of a group of players is interesting in itself. This article studies secret correlation
as arising from monitoring structures. Gossner [8, 9] and Bavly and Neyman [3] studied its emergence through
limitations of computational capacities of the players.

The problem faced by the team consists in finding the optimal tradeoff between using previous signals that are
unknown to team II as correlation devices, and generating such signals for future use. We measure the amount
of secret information contained in past signals by the signals’ entropy. Our main result characterizes the team’s
maxmin payoff as the best payoff that can be obtained by a convex combination of correlated strategies under
the constraint that the average entropy spent by the correlation devices does not exceed the average entropy of
secret signals generated.

We motivate the problem by discussing examples in §2, present the model and definitions in §3, and the main
result in §4. We discuss examples in §5, and computational aspects in §6. The proof of the main results is given
in §7. For simplicity, the model and the main result are first stated for a simple class of signalling structures;
we extend our main result to more general signalling structures in §8. Finally, we show consequences for the
Folk Theorem in §9.

2. Examples. We consider a three-player game where the teams are I= 	1
2� and II= 	3�. Player 1 chooses
rows, Player 2 chooses columns, and Player 3 chooses matrices. The payoffs to the team are given by

a

b

( a b
1 0
0 0
L

)( a b
0 0
0 1
R

)
�

In the repeated game with perfect monitoring, the team guarantees the maxmin of the one-shot game, where
the max runs over the independent probability distributions on A1 ×A2. That is, the team guarantees 1

4 .
Now assume that Player 3 receives blank signals, i.e., has no information on the action profile of I, whereas

Players 1 and 2 observe each other’s actions. The team can then use the first move of Player 1 as a correlation
device, and thus can guarantee the maxmin of the one-shot game in long repetitions, where the max runs over
the set of all probability distributions on A1 ×A2. That is, from the second stage on, I guarantees 1

2 .
Now consider the case where team members observe each other’s actions and the signal of Player 3 is given

by the following matrix:

a

b

( a b
s s′

s′ s

)
�

Player 3 thus learns at each stage whether Players 1 and 2 played the same action. Consider the following
strategy of the team: at Stage 1 each player randomizes between his two actions with equal probabilities. Let a1

1
be the random move of Player 1 at Stage 1. At each stage n> 1, play �a
a� if a1

1 = a and play �b
 b� if a1
1 = b.

The signal of Player 3 at Stage 1 is uniformly distributed and conditional on this signal; a1
1 is also uniformly

distributed. Since after Stage 1 the signals will be constant, Player 3 never learns anything about the value of a1
1.

Actions of Players 1 and 2 are thus correlated from Stage 2 on and I guarantees 1
2 .

Finally, consider the case where team members observe each other’s actions and the signal of Player 3 is
given by Player 2’s action, i.e., by the following matrix:

a

b

( a b
s s′

s s′

)
�

As in the latter two cases, the move a1
1 of Player 1 at Stage 1 is unobserved by Player 3 and may serve as

a correlation device. Again, let Players 1 and 2 both randomize uniformly at Stage 1 and at Stage 2, and play
�a
a� if a1

1 = b and �b
 b� if a1
1 = a. Unlike in the previous examples, the move of Player 2 at Stage 2 reveals a1

1
and thus the correlation gained at Stage 1 is lost after Stage 2. The tradeoff between generating signals for
correlation and using this correlation appears here, Stage 1 generates a correlation device, and the Stage 2 uses
it. Playing this two-stage strategy cyclically, the team guarantees 3

8 and we will see that this is not optimal.
This game with the latter signaling structure serves in the sequel of the paper for further illustrations. We

shall therefore refer to it as the main example.
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3. Model and definitions.

3.1. The repeated game. Let I= 	1
 � � � 
 �I�� be a finite set of players called team and II be another player.
For each player i ∈ I, let Ai be player i’s finite set of actions and let B be player II’s finite set of actions.
We denote A =∏

i∈I Ai. At each stage t = 1
2
 � � � , each player chooses an action in his own set of actions;
if �a
 b� = ��ai�i∈I
 b� ∈ A × B is the action profile played, the payoff for each team player i ∈ I is g�a
b�
where g� A×B→�. The payoff for player II is −g�a
b�.

After each stage, if a is the action profile played by players i ∈ I, a signal s is drawn in a finite set S with
probability q�s � a�, where q maps A to the set of probabilities on S. Player II observes �s
 b�, whereas team
players observe �a
 s
 b�. Thus, in our model, all team members observe the same random signal that reveals the
signal observed by player II. Note that the model is designed to preserve transparency; §8 presents extensions
of the model and results to a larger class of signalling structures.

For each finite set E, we let ��E� be the set of probabilities on E. We write an element x ∈ ��E� as a
vector x = �x�e��e∈E with x�e�≥ 0 and

∑
e x�e�= 1. We denote by ⊗ the direct product of probabilities, i.e.,

�p⊗ q��x
 y�= p�x�q�y�.
A history of length n for the team is an element hn of Hn = �A×B×S�n, and a history of length n for player

II is an element hII
n of H II

n = �B×S�n; by convention, H0 and H II
0 are arbitrary singletons. A behavioral strategy

�i for a team player i is a mapping �i�
⋃

n≥0 Hn → ��Ai�; a behavioral strategy  for player II is a mapping
 �

⋃
n≥0 H

II
n → ��B�. A profile of behavioral strategies ��
  �= ���i�i∈I
  � induces a probability distribution

P�
 on the set of plays �A×B× S�
 endowed with the product �-algebra.
Given a discount factor 0 < " < 1, the discounted payoff for team I induced by ��
  � is #"��
  � =

E�
 $
∑

n≥1�1−"�"n−1g�an
bn�% where �an
bn� denotes the random action profile at stage n. The "-discounted
maxmin payoff of team I denoted v" is

v" =max
�

min
 

#"��
  ��

The average payoff for team I up to stage n is #n��
  �= E�
 $�1/n�
∑n

m=1 g�an
bn�%. The n-stage maxmin
payoff of team I denoted vn is

vn =max
�

min
 

#n��
  ��

The uniform maxmin payoff of player II denoted v
 is defined as follows:
(1) The team I guarantees v ∈� if

∀)> 0
 ∃� = ��i�i∈I
 ∃N s.t. ∀  
 ∀n≥N
 #n��
  �≥ v− )�

(2) Player II defends v ∈� if

∀)> 0
 ∀�
 ∃ 
 ∃N s.t. ∀n≥N
 #n��
  �≤ v+ )�

(3) The uniform maxmin, if it exists, is v
 ∈� such that I guarantees v
 and II defends v
.
The maxmin v1 of the one-shot game is simply maxx∈⊗j �=i��Aj � minb g�x
 b�, where g is extended to mixed

action in the usual way. We call this the independent maxmin. This is the best that the team can guarantee
in the one-shot game with independent mixed strategies. This quantity can also be guaranteed in every version
of the repeated game by playing independent and identically distributed (i.i.d.) a mixed strategy profile x that
achieves the maximum in v1. Therefore,

∀n
 ∀"
 vn ≥ v1
 v" ≥ v1 and v
 ≥ v1�

On the other hand, in any version of the repeated game, the team cannot guarantee more than the value of the
two-person zero-sum game defined by �I
 II
A
B
 g�. Let us denote val g = maxx∈��A� minb g�x
 b� this value,
and call it the correlated maxmin. One has

∀n
 ∀"
 vn ≤ val g
 v" ≤ val g and v
 ≤ val g�

3.2. Information theory tools. The entropy of a finite random variable x with law P is, by definition,

H�x�=−E$logP�x�%=−∑
x

P�x� logP�x�


where log denotes the logarithm with Base 2, and 0 log0= 0. Note that H�x�≥ 0 and that H�x� depends only on
the law P of x. The entropy of x is thus the entropy H�P� of its distribution P , with H�P�=−∑

x P�x� logP�x�.
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Let �x
y� be a couple of random variables with joint law P such that x is finite. The conditional entropy of x
given 	y = y� is the entropy of the conditional distribution P�x � y� when this conditional distribution is well
defined:

H�x � y�=−E$logP�x � y�%�
The conditional entropy of x given y is the expected value of the previous

H�x � y�=
∫
H�x � y�dP�y��

If y is also finite, one has the following relation of additivity of entropies:

H�x
y�=H�y�+H�x � y��

4. The main result. The maxmin values v", vn are defined in terms of the data of the repeated game. Our
main result is a characterization of their asymptotic values and of v
.

4.1. Correlations systems. Let � be a strategy. Suppose that at stage n, the history for player II is
hII
n = �b1
 s1
 � � � 
 bn
 sn�. Let hn = �a1
 b1
 s1
 � � � 
 an
 bn
 sn� be the history for the team. The mixed action

played by the team at stage n+ 1 is ��hn� = ��i�hn��i∈I. Player II holds a belief on this mixed action—he
believes that player I plays ��hn� with probability P��hn � hII

n �. The distribution of the action profile an+1 given
the information hII

n of player II is
∑

hn
P��hn � hII

n ���hn�, an element of ��A� the set of correlated distributions
on A.
Definition 1. Let X = ⊗i∈I��Ai� be the set of independent probability distributions on A. A correlation

system is a probability distribution on X and we let C =��X� be the set of all correlation systems.
X is a closed subset of ��A� and thus C is compact with respect to the weak-∗ topology.
Assume that at some stage n, after some history hII

n , the distribution of ��hn� conditional on hII
n is c. The play

of the game at this stage is as if hn were drawn according to the probability distribution c and announced to
each player of the team but not to player II. Given hn, each team player chooses a mixed action. This generates
a random action profile for the team and a random signal. We study the variation of uncertainty of player II
regarding the total history, measuring uncertainty by entropy.
Definition 2. Let c be a correlation system and �x
a
 s� be a random variable in X×A× S such that the

law of x is c, the law of a given 	x= x� is x, and the law of s given 	a= a� is q�· � a�. The entropy variation
of c is

�H�c�=H�a
 s � x�−H�s��

The entropy variation is the difference between the entropy gained and the entropy lost by the team. The
entropy gain is the conditional uncertainty contained in �a
 s� given x; the entropy loss is the entropy of s, which
is observed by player II. If x is finite, from the additivity formula

H�x
a
 s�=H�x�+H�a
 s � x�=H�s�+H�x
a � s�
and therefore,

�H�c�=H�x
a � s�−H�x��

The entropy variation is thus the new entropy of the information possessed by I and not by II minus the initial
entropy.

Now we define, given a correlation system c, the payoff obtained when player II plays a best reply to the
expected distribution on A.
Definition 3. Given a correlation system c, the distribution of the action profile for the team is xc ∈��A�

such that for each a ∈A, xc�a�=
∫
X
1ixi�ai�dc�x�. The optimal payoff yielded by c is 2�c�=minb∈B g�xc
 b�.

We consider the set of feasible vectors ��H�c�
2�c�� in the (entropy variation, payoff) plane:

V = 	��H�c�
2�c�� � c ∈C��

Lemma 4. V is compact.

Proof. Since s is independent of x conditionally on a, the additivity formula gives H�a
 s � x�=H�a � x�+
H�s � a� and the entropy variation is

�H�c�=H�a � x�+H�s � a�−H�s��
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Figure 1. The set V , the graph of cavu, and w= cavu�0�.

From the definitions of entropy and conditional entropy, recalling that the law of a given 	x= x� is x,

�H�c�=
∫
X
H�x�dc�x�+∑

a

xc�a�H�q�· � a��−H

(∑
a

xc�a�q�· � a�
)



which is clearly a continuous function of c. �H and 2 are thus continuous on the compact set C so V is
compact. �

We introduce the following notation:

w= sup	x2 ∈� � �x1
 x2� ∈ coV 
 x1 ≥ 0��

This is the highest payoff associated with a convex combination of correlation systems under the constraint
that the average entropy variation is nonnegative. For every correlation system c such that x is almost surely
constant, �H�c�≥ 0 thus V intersects the half-plane 	x1 ≥ 0�. Since V is compact, so is its convex hull and the
supremum is indeed a maximum. The set V need not be convex as shown in Goldberg [7]; the supremum in the
definition of w above might not be achieved by a point in V , but might be achieved by a convex combination
involving two points of V with nonzero weights.

For computations, it is convenient to express the number w through the boundary of coV . Define for each
real number h

u�h�=max	2�c� � c ∈C
 �H�c�≥ h��

From the definition of V we have for each h

u�h�=max	x2 � �x1
 x2� ∈ V 
 x1 ≥ h��

Since V is compact, u�h� is well defined. Let cavu be the least concave function pointwise greater than u. Then

w= cavu�0��

Indeed, u is upper-semi-continuous, nonincreasing, and the hypograph of u is the comprehensive set V ∗ = V −�2
+

associated with V . This implies that cavu is also nonincreasing, u.s.c., and its hypograph is coV ∗.
Figure 1 illustrates how the map cavu and the value w are derived from the set V .

4.2. A characterization of asymptotic maxmin values.

Theorem 5. The maxmin value of the "-discounted game and of the n-stage game both converge to the
same limit respectively as " goes to 1 and as n goes to infinity. This limit coincides with the uniform maxmin
which is

lim
"

v" = lim
n

vn = v
 =w�

5. Examples.

5.1. Perfect observation. We say that the observation is perfect when the signal s reveals the action pro-
file a, i.e., a �= a′ ⇒ suppq�· � a� ∩ suppq�· � a′� = �. It is well known that, in this case, the maxmin of the
repeated game is the independent maxmin of player II; i.e., w= v1 =maxx∈X minb g�x
 b�. Now we verify that
our main theorem gives the same value.
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Since the observation is perfect, H�a � s�= 0 and �H�c�=H�s � x�−H�s�≤ 0 for each correlation system c
and �H�c�= 0 if and only if s (and thus a) is independent of x. This implies that �H�c�= 0 if and only if c
is a Dirac measure on some x ∈X.

Now let �x1
 x2� ∈ coV such that x1 ≥ 0. We can write �x1
 x2� as a convex combination:

�x1
 x2�=
∑
k

"k��H�ck�
2�ck���

From the above discussion, for each k such that "k > 0, ck is a Dirac measure on some xk ∈ X; thus 2�ck�=
minb g�xk
 b�≤ v1. Therefore, x2 ≤ v1 and also w ≤ v1, hence the equality.

5.2. Trivial observation. We say that the observation is trivial when the signal s does not depend on the
action profile a. In this case, there is no limitation on the correlation the team may achieve by exchanging some
messages; thus w = val g =maxx∈��A� minb g�x
 b�, which is the correlated maxmin of player II. Applying our
main theorem, we remark that if observation is trivial, �H�c� ≥ 0 for each c. Let x ∈ ��A� that achieves the
max in val g and let c be such that the distribution induced on actions is xc = x (e.g., decompose x as a convex
combination of pure action profiles). One has �H�c�≥ 0 and 2�c�= val g; thus w= val g.

5.3. 3
8 is not optimal in the main example. We revisit our main example, i.e., the following three-player

game where Player 1 chooses rows, Player 2 chooses columns, and Player 3 chooses matrices:

a

b

( a b
1 0
0 0
L

)( a b
0 0
0 1
R

)
�

The signals are given by the moves of Player 2, i.e.,

a

b

( a b
s s′

s s′

)
�

Consider the following cyclic strategy: the team plays the mixed action profile � 1
2 


1
2 �⊗ � 1

2 

1
2 � at stage 2n+1.

At stage 2n+ 2, the team plays �a
a� if a1
2n+1 = a and �b
 b� if a1

2n+1 = b. This strategy consists of playing
alternately two correlation systems. Let c+1 be the Dirac measure on � 1

2 

1
2 �⊗ � 1

2 

1
2 � and c−1 which puts equal

weights on �1
0�⊗ �1
0� and on �0
1�⊗ �0
1�; i.e., c−1 ∈ ��X� and c−1�	�1
0�⊗ �1
0��� = c−1�	�0
1�⊗
�0
1���= 1

2 . We have 2�c+1�= 1
4 , �H�c+1�=+1, 2�c−1�= 1

2 , and �H�c−1�=−1 since the move of Player 2
at an even stage reveals the action of Player 1 at the previous stage. The so-defined strategy, playing c+1 at
odd stages and c−1 at even stages, gives an average payoff of 3

8 and an average entropy variation of 0. Now
we deduce from Theorem 5 the existence of strategies for Players 1 and 2 that guarantee more than 3

8 . By
Theorem 5, it is enough to show the existence of a convex combination of two correlation systems yielding an
average payoff larger than 3

8 and a nonnegative average entropy variation.
Define the correlation system c7 which puts equal weights on �1 − )
)�⊗ �1
0� and �)
1 − )�⊗ �0
1�:

c7�	�1− )
)�⊗ �1
0��� = c7�	�)
1− )�⊗ �0
1��� = 1
2 . We have 2�c)� = �1− )�/2 and �H�c)� = h�)�− 1

where for x ∈%0
1$, h�x�=−x log�x�− �1−x� log�1−x�, h�0�= h�1�= 0. Using that h′�0�=+
, we deduce
the existence of )> 0 such that ��H�c)�
2�c)�� lies above the line

{
"

(
−1


1
2

)
+ �1−"�

(
1


1
4

)

 " ∈ $0
1%

}
�

For this ), there exists 0≤ "≤ 1 such that "�H�c)�+ �1−"��H�c+1�= 0 and "2�c)�+ �1−"�2�c+1� >
3
8 ,

which implies that the team can guarantee more than 3
8 .

Figure 2 gives a geometric illustration of the fact that playing c) and c+1 with frequencies " and 1−" yields
a payoff above 3

8 .

6. Computing w. In §4, the maxmin w is characterized as cavu�0� with u�h� = max	2�c� � c ∈ C

�H�c� ≥ h� so the numerical computation of w consists of computing the function u�h�, i.e., in solving the
associated optimization problem. This task proves to be difficult. In the paper, Gossner et al. [10], we develop
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✲

✻

∆H

π

�

A+1

+1

�

A−1

−1
�

�

B

�

3
8

� λπ(cε) + (1 − λ)1
4

�

1
2

�

1
4
















❅
❅

❅
❅

❅
❅

❅
❅

Figure 2. A+1 = ��H�c+1�
2�c+1��, A−1 = ��H�c−1�
2�c−1��, B= ��H�c)�
2�c)��.

tools to solve it starting from the following observations. In this maximization problem, the objective function
2�c�=minb g�xc
 b� depends on the correlation system c through its barycenter xc only. Also, if we look at the
constraint in the expression

�H�c�=
∫
X
H�x�dc�x�+∑

a

xc�a�H�q�· � a��−H

(∑
a

xc�a�q�· � a�
)



the second and third terms depend only on xc. Only the first term H�a � x�= ∫
H�x�dc�x� depends on the way

the distribution c averages on xc. We argue that fixing the barycenter xc, we may choose any other c′ that also
averages on xc provided that

∫
H�x�dc′�x� ≥ ∫

H�x�dc�x�. In Gossner et al. [10], we study the problem of
how to generate a correlated distribution of actions x∗ through a correlation system c, while maximizing the
expected entropy: maxc� xc=x∗

∫
H�x�dc�x�. Note that this latter problem is independent both of the game and of

the signaling structure; thus its solution is helpful in solving all the instances covered by Theorems 5 and 14.
The paper Gossner et al. [10] studied this auxiliary problem and solved the case where the team consists of two
players, each of them having two actions. The solution and its proof are rather involved and the reader is referred
to Gossner et al. [10] for the statement of the solution. Building on this result, two examples of games and
signalling structures have been completely resolved so far: one in Gossner et al. [10] and one in Goldberg [7].

Note that for each h ∈ �, either cavu�h� = u�h� or cavu is linear on some interval containing h. Thus,
either cavu�0�=2�c� for some c s.t. �H�c�≥ 0 or there exists c1, c2, and " ∈ �0
1� s.t. cavu�0�= "2�c1�+
�1− "�2�c2� and "�H�c1�+ �1− "��H�c2� ≥ 0. In the first case, the optimal strategy can be thought of as
stationary (in the space of correlation systems), since only one correlation system is used at almost all stages. In
the second case, the strategy repeatedly plays two phases. Assume without loss of generality �H�c1� > 0. In a
first phase, the optimal strategy plays c1 to accumulate entropy; in a second phase, the optimal strategy plays c2,
spending entropy to yield a good payoff. The relative lengths of these phases are �"
1−"�. Gossner et al. [10]
showed that our main example is of the first kind and Goldberg [7] exhibited an example of the second.

We consider once more the main example. In this case, Gossner et al. [10] proved that the only points v
in the set V that are undominated (i.e., �v+�2

+�∩ V = 	v�) are of the form v = ��H�c�
2�c�� where c is a
correlation system of the form

c= 1
2
��x
1−x�⊗�x
1−x� +

1
2
��1−x
x�⊗�1−x
x�


for some x ∈ $0
1%. Such a correlation system has the following properties: for each x, the marginal distribution
of actions under c is � 1

2 

1
2 � for each player and the respective probabilities of �a
a� and �b
 b� are equal. It

follows that the associated payoff is 2�c�= 1
2x

2+ 1
2 �1−x�2; the entropy variation is �H�c�= 2H�x
1−x�−1.

The graph of h �→ u�h� is then the parametric curve:
{(

2H�x
1− x�− 1

1
2
x2 + 1

2
�1− x�2

)
� x ∈ $0
1%

}
�

This curve is concave (this is easily checked by computing the slope of this curve at x) thus w= cavu�0�= u�0�;
i.e., w = 1

2x
2 + 1

2 �1− x�2 where 0< x < 1
2 is such that �H�c�= 2H�x
1− x�− 1= 0. Numerically, this gives

w� 0�401.
The graph of u can be seen in Figure 3.
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Figure 3. The graph of u for the main example.

7. Proof of the main results.

7.1. Player II defends w. Here we prove that for every strategy of the team, if player II plays stage-best
replies, the average vector of (payoffs, entropy variation) generated belongs to V . This latter implies that no
strategy for the team can guarantee a better payoff than w. The proof follows the same lines as some previous
papers using entropy methods (see, e.g., Neyman and Okada [18, 19] and Gossner and Vieille [?]).
Definition 6. Let � be a strategy for the team. Define inductively  � as the strategy of player II that plays

stage-best replies to � : At Stage 1,  ���� ∈ argminb g�����
 b� where � is the null history that starts the
game. Assume that  � is defined on histories of length less that n+ 1. For every history hII

n of player II, let
xn+1�h

II
n � ∈��A� be the distribution of the action profile of the team at stage n+ 1 given hII

n and let  ��h
II
n � be

in argminb g�xn+1�h
II
n �
 b�.

Lemma 7. Player II defends w in every n-stage game, i.e., for each integer n and strategy profile for the
team � ,

#n��
  ��≤w�

Therefore, for each n, vn ≤w.

Proof. Let � be a strategy for the team and set  =  � . Let am, bm, sm be the sequences of random action
profiles and signals associated to ��
  �; let hII

m = �b1
 s1
 � � � 
bm−1
 sm−1� be the history of player II before
stage m, and let hm = �a1
b1
 s1
 � � � 
am−1
bm−1
 sm−1� be the total history. Let xm = ��hm� and cm�h

II
m� be the

distribution of xm conditional on hII
m; i.e., cm�h

II
m� is the correlation system at stage m after history hII

m. Under
��
  �, the payoff at stage m after hII

m is minb g�E�
 $xm � hII
m%
 b� = 2�cm� from the definition of  and thus

#n��
  �=E�
 $�1/n�
∑n

m=1 2�cm�%.
We set Hm =H�a1
 � � � 
am � hII

m+1�. Using the additivity of entropy, we have

H�a1
 � � � 
am
bm
 sm � hII
m� = H�bm
 sm � hII

m�+Hm

= Hm−1 +H�am
bm
 sm � hm��

Thus,

Hm −Hm−1 = H�am
bm
 sm � hm�−H�bm
 sm � hII
m�

= H�am
 sm � hm�−H�sm � hII
m�+H�bm � hm�−H�bm � hII

m�

= H�am
 sm � hm�−H�sm � hII
m�

= H�am
 sm � xm
hII
m�−H�sm � hII

m�

= E�
 �H�cm�h
II
m��


where the second equality holds since am and bm are independent conditional on hII
m, the third equality holds

since bm is hII
m-measurable, and the fourth equality holds since �am
 sm� depends on hm only through xm. We

deduce
n∑

m=1

E�
 �H�cm�h
II
m��=H�a1
 � � � 
an � b1
 s1
 � � � 
bn
 sn�≥ 0�

Therefore, the vector ��1/n�
∑n

m=1E�
 �H�cm�h
II
m��
#n��
  �� is in coV ∩ 	x1 ≥ 0�. �
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Corollary 8. Player II defends w in every "-discounted game; i.e., for each " ∈ �0
1� and strategy profile
for the team �:

#"��
  ��≤w�

Therefore, for each ", v" ≤w.

Proof. The discounted payoff is a convex combination of the average payoffs (see, e.g., Lehrer and
Sorin [17]):

#"��
  �=∑
n≥1

�1−"�2n"n−1#n��
  ��

From Lemma 7, we get #"��
  ��≤w and thus v" ≤w. �

7.2. vn converges to w. We introduce a class of strategies for the team against which the myopic best reply
is a best reply in the repeated game. Call a strategy of a team player autonomous if it does not depend on
player II’s past moves; that is, for i ∈ I, �i�

⋃
n�A× S�n → ��Ai�. Against a profile of autonomous strategies,

the myopic best reply is a true best reply.

Lemma 9. Let � be a profile of autonomous strategies, for each stage n and strategy  for player II,
E�
 �

g�an
bn�≤E�
 g�an
bn�. Thus  � is player II’s best reply in any version of the repeated game.

Proof. Consider the optimization problem of player II,

min
 

E�
 

∑
n≥1

�1−"�"n−1g�an
bn��

Since player II’s moves do not influence the play of the team, this optimization problem is equivalent to solving
minb E� $g�an
 b� � hII

n % for n and each history hII
n . The same argument applies in the n-stage game. �

Now we associate autonomous strategies to distributions on strings of actions and signals. Note that for
every autonomous strategy � , the induced distribution P� on �A × S�
 is such that for every history hI

n =
�a1
 s1
 � � � 
 an
 sn�, P��an+1
 sn+1 � hI

n�=
∏

i �
i�hI

n��a
i� ·q�s � a�. We let Y be the set of probability distributions y

on A× S for which there exists x ∈X such that for each �a
 s�, y�a
 s�=∏
i x

i�ai� · q�s � a�.
We call a distribution P on �A× S�
 a Y -distribution if at each stage n, after P-almost every history hI

n =
�a1
 s1
 � � � 
 an
 sn� ∈H I

n, the distribution of �an+1
 sn+1� conditional on hI
n, P�an+1
 sn+1 � hI

n� belongs to Y . Every
autonomous strategy profile induces a Y -distribution; conversely, a Y -distribution defines an autonomous strategy
profile (up to histories with probability 0: for these histories, the strategy is arbitrarily defined).

Given an autonomous strategy profile � or equivalently a Y -distribution, consider the random correlation
system at stage n: given hII

n , cn is the distribution of ��hI
n�. The random variable cn is hII

n -measurable with
values in C = ��X�. We consider the empirical distribution of correlation systems up to stage n, i.e., the time
frequencies of correlation systems appearing along the history hII

n . We define the random variable

dn =
1
n

∑
m≤n

7cm


where 7c denotes the Dirac measure on c. The random variable dn has values in D = ��C�. If we let
:n���=E�dn be the barycenter of dn, i.e., the element of D such that for any real-valued continuous function
f on C, E� $

∫
f �b�ddn�b�%=E:n���f , the average payoff under ��
  �� can be expressed as

#n��
  ��=E�
 �

[
1
n

n∑
m=1

2�cm�

]
=E�
 �

$Edn
2%=E:n���2�

From Gossner and Tomala [11, Theorem 2.2], we deduce:

Lemma 10. For every : ∈��C� such that E:�H ≥ 0, there exists a Y -distribution P on �A× S�
 such that
EPdn weak-∗ converges to :.
Since a Y -distribution P corresponds to an autonomous strategy, there exists � autonomous such that :n���

weak-∗ converges to :.

Note that Theorem 2.2 (Gossner and Tomala [11]) applies to an observer (here player II) who gets deterministic
signals on a stochastic process. The process may be constrained in such a way that transitions belong to a fixed
closed subset of probability distributions. When applying Theorem 2.2 to prove Lemma 10, we assume that the
team chooses the pair �a
 s� at each stage and is constrained in that the law of �a
 s� conditional on the past
history belongs to y ∈ Y . Since the transition q is fixed, choosing y = x⊗q ∈ Y is equivalent to choosing x ∈X,
so the construction is legitimate.
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Lemma 11. lim infn vn ≥ sup	E:2 � : ∈��C�
 E:�H ≥ 0�.

Proof. For each : such that E:�H ≥ 0, the previous lemma yields the existence of an autonomous strategy �
such that limn #n��
  ��=E:2. From Lemma 9, this gives lim infn vn ≥E:2. �

We may now conclude the proof. The set of vectors �E:�H
E:2� as : varies in ��C� is coV ; thus sup	E:2 �
: ∈��C�
E:�H ≥ 0�=w. From Lemmas 7 and 11 we get limn vn =w.

7.3. v" converges to w. Since v" ≤w, it is enough to prove the following lemma:

Lemma 12. ∀)> 0, ∃� , ∃"0, such that ∀"≥ "0, #"��
  ��≥w− ).

Proof. For ) > 0, choose � autonomous such that #n��
  �� ≥ w − )/2. Define a cyclic strategy �∗ as
follows: play � until stage n and restart this strategy every n stages. Set ym as the expected payoff under
��∗
  �∗� at stage m. Since �∗ is cyclic,  �∗ is also cyclic and

#"��
∗
  �∗�=

n∑
m=1

�1−"�"m−1ym +"n#"��
∗
  �∗��

So,

#"��
∗
  �∗�=

n∑
m=1

�1−"�
"m−1

1−"n
ym�

Then, lim"→1 #"��
∗
  �∗�= �1/n�

∑n
m=1 ym ≥w− )/2 which ends the proof. �

7.4. Proof of the existence and value of v
. From Lemma 7, by playing stage-best replies player II
defends w. On the other hand, team I guarantees vn by playing cyclically an optimal strategy in the n-stage
game, thus I guarantees lim vn =w.

8. More general signalling structures. The method developed in this paper, and thus Theorem 5, extends
to a larger class of signals than those presented in §3. Note, indeed, that our proof relies on only the following
three conditions: (i) the signal of player II does not depend on his own action; (ii) the information regarding
actions and signals that are unobserved by player II is symmetric within the team; and (iii) each team player
knows the information of player II regarding those actions and signals. Condition (i) means that the entropy
variation is not controlled by player II, which ensures that player II best-responds in the repeated game by
optimizing myopically. Otherwise, player II faces a tradeoff between best-responding (potentially allowing team
players to get a large amount of entropy) and minimizing the entropy produced by his choice. The case where
the entropy variation depends on the action of player II is under investigation. Conditions (ii) and (iii) mean that
each team player is able to compute the entropy variation. They thus agree on how to use the available entropy
for correlation.

Consider the following signalling structure: if the team plays the action profile a and player II plays action b,
then
• a pair of signals �s
 t� ∈ S × T is drawn from a pair of finite sets S, T according to q�· � a� with q� A→

��S× T �. The tuple �a
 s
 t� is observed by each team player. Player II observes �b
 s�;
• each player i ∈ I observes a private signal r i = f i�a
 b� which is a deterministic function of the action

profile.
These signalling structures generalize those of §3 in two respects. First, team players do not fully observe the

move of player II. Second, they get to observe a random signal t that depends on the action profile. For instance,
the generalization includes the case where all actions are perfectly observed and the team gets to privately
observe at each stage the realization of a random variable. Note that the more-general signaling structure satisfies
the requirements (i), (ii), and (iii) above: the only information asymmetry within the team is about the move of
player II, which cannot be used for correlation. Theorem 5 extends naturally to these signalling structures.

The definition of the optimal payoff 2�c� associated with a correlation system c is unchanged. The definition
of the entropy variation generalizes as follows:
Definition 13. Let c be a correlation system and �x
a
 s
 t� be a random variable in X ×A× S × T such

that the law of x is c, the law of a given 	x= x� is x, and the law of �s
 t� given 	a= a� is q�· � a�. The entropy
variation of c is

�H�c�=H�a
 s
 t � x�−H�s��
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With this adaptation, we still consider the set of feasible vectors ��H�c�
2�c�� in the (entropy variation,
payoff) plane:

V = 	��H�c�
2�c�� � c ∈C�

and we derive the quantity
w= sup	x2 ∈� � �x1
 x2� ∈ coV 
 x1 ≥ 0��

Theorem 14. Under the generalized signaling structure, the maxmin value of the "-discounted game and
of the n-stage game both converge to the same limit, respectively, as " goes to 1 and n goes to infinity. This
limit is

lim
"

v" = lim
n

vn =w�

Furthermore, the uniform maxmin exists and takes the value w.

Proof. We begin by extending the proof of Lemma 7. We first modify the signalling structure by assuming
that the actions of player II are publicly observable. In this modified game, since the signals r i are deterministic
functions of b, the set of strategies of the team is larger, so if player II defends w in the modified game, it is
also true in the original game.

The crux is to prove that

n∑
m=1

E�
 �H�cm�h
II
m��=H�a1
 � � � 
an � b1
 s1
 � � � 
bn
 sn�≥ 0�

Set Hm =H�a1
 t1
 � � � 
am
 tm � hII
m+1�. Using the additivity of entropy,

H�a1
 t1
 � � � 
am
 tm
bm
 sm � hII
m� = H�bm
 sm � hII

m�+Hm

= Hm−1 +H�am
bm
 sm
 tm � hm��

Thus,

Hm −Hm−1 = H�am
bm
 sm
 tm
 � hm�−H�bm
 sm � hII
m�

= H�am
 sm
 tm � hm�−H�sm � hII
m�+H�bm � hm�−H�bm � hII

m�

= H�am
 sm
 tm � hm�−H�sm � hII
m�

= H�am
 sm
 tm � xm
hII
m�−H�sm � hII

m�

= E�
 �H�cm�h
II
m��

and the rest of the proof carries out.
Second, to prove that the team guarantees w, define an autonomous strategy as a strategy that does not

depend on the signals r i; i.e., it depends solely on the action profiles a and on the signals �s
 t�. We let
Y ⊂��A× S× T � be the set of probability distributions y such that ∀ �a
 s
 t�, y�a
 s
 t� = x�a�q�s
 t � a� for
some x ∈X. This is the set of distributions on A× S× T that can be obtained by a profile of mixed strategies
x of the team and the transition q. An autonomous strategy can be identified with a probability distribution P
on �A×S×T �
 such that at each stage n, after P-almost every history hI

n = �a1
 s1
 t1
 � � � 
 an
 sn
 tn� ∈H I
n, the

distribution P�an+1
 sn+1
 tn+1 � hI
n� belongs to Y . We may thus apply Lemma 10 to Y -distributions and conclude

as in Theorem 5. �

9. Consequences for the Folk Theorem. In repeated games with imperfect monitoring, information asym-
metries raise a number of difficulties that cause the set of equilibrium payoffs to be hard to characterize in
general. For this reason, the central results consider public equilibria (Abreu et al. [1], Lehrer [14], Fudenberg
et al. [6]), equilibria in which a communication mechanism serves to resolve information asymmetries (see
Compte [4], Kandori and Matsushima [13], Renault and Tomala [21]), or two-player games (Lehrer [15, 16]).
In our approach, we tackle information asymmetries by measuring them with the entropy function.

The previous examples show three-player games in which our main theorem allows us to characterize the
individually rational payoff of one player in the repeated game. Now we present a signalling structure for which
our theorem allows for a characterization of all individually rational payoffs.

Consider a game in which the set of players is 	1
 � � � 
 n�, n ≥ 4, and in which i’s finite action set is Ai.
Players i = 2
 � � � 
 n − 1, have perfect observation: they observe si = �a1
 � � � 
 an�. Player 1 observes every
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player but player n’s signal is s1 = �a1
 � � � 
 an−1�. Player n observes every player but Player 1’s signal is
sn = �a2
 � � � 
 an�. This structure of signals is represented in Renault and Tomala [20] by a graph whose nodes
are the players and where there is an edge between i and j whenever i and j monitor each other. The graph
described here is two-connected: there are at least two distinct paths from i to j for each pair �i
 j�.

Let cog�A� be the set of feasible payoffs. To define the individually rational level of player i in the repeated
game, we consider the game played by the team −i—i.e., all players but i—against player i (thus, with pay-
off −gi), and we let vi be the associated uniform value. We set then IR= 	x ∈�n
 xi ≥ vi�, the set of individually
rational payoffs with respect to the minmax values of the repeated game. Renault and Tomala [20] proved that
in a repeated game where each player monitors the actions of his neighbors in a fixed graph the set of uniform
equilibrium payoffs equals cog�A�∩ IR when the graph is two-connected. However, Renault and Tomala [20]
left open the characterization of minmax values of the repeated game.

Since each Player 1 < i < n has perfect observation, his individually rational level vi in the repeated game
equals his independent minmax vi

1. Regarding player n (respectively, Player 1), we may apply Theorem 14.
Signals are deterministic: team players in 	1
 � � � 
 n−1� fully observe the team action profile, and each of them
gets to observe a signal on the move of player n. Player 1 observes a constant signal and the other players
observe this move. We thus get a complete characterization of the set of uniform equilibrium payoffs.

Lehrer [14] characterized Nash equilibrium payoffs for all repeated games having a semistandard signalling
structure. Our example constitutes—as far as we know—the only other n-player signalling structure for which
a characterization of Nash equilibrium payoffs is known for all payoff functions.
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