
Rationalizable Outcome Distributions: A
Markov Characterization∗

Olivier Gossner† Rafael Veiel‡

Preliminary draft

First version: October 20, 2022

This version: December 12, 2022

Abstract

We study (interim correlated) rationalizability in a game with in-
complete information. We characterize the recursive set of possible
rationalizable hierarchies through a finite automaton, and provide a
revelation principle that characterizes the distributions over these hi-
erarchies that arise from any common prior. We show that a simple
and finitely parametrized class of information structures, Stationary
Common Automaton Markov Priors (SCAMP), is sufficient to gen-
erate every outcome distribution induced by general common prior
information structures. Using this result, we characterize the set of
rationalizable distributions as a convex polyhedron.
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1 Introduction

In strategic interactions with incomplete information, we are interested in
the two following questions. First, what are the possible distributions of out-
comes when the information received by players varies, and second, how can
we, given such a distribution, construct an information structure that gen-
erates it? This question is of theoretical interest per se and has implications
on information design and robustness.

Firstly, from the theoretical point of view, Aumann (1974, 1987) argues
that to study outcomes of a game, it is important to encompass information
that players may possess, while being as agnostic as possible on the nature
of this information. The corresponding solution concept is correlated equi-
librium and its extensions to incomplete information (Forges, 1986) and to
Bayes Correlated Equilibrium (Bergemann and Morris, 2016). Each corre-
lated equilibrium distribution is then associated with an information struc-
ture that implements it in a canonical way, where each player is informed of
their action.

Secondly, information design (see e.g. Kamenica, 2019; Morris et al., 2020,
for recent surveys) studies the impact of information on outcomes in games.
In this literature, implementation is achieved through the dissemination of
information to players. As in mechanism design, the question is not just
what outcomes can be implemented, but also, for all possible such outcomes,
to build a device that implements it.

Thirdly, an outcome of a game of complete information is robust if it
survives with high enough probability in every neighboring game with in-
complete information (Kajii and Morris, 1997). Understanding all outcomes
of games with incomplete information thus provides a key to, in turn, char-
acterizing robust outcomes.

Which outcomes are induced by an information structure in a given game
depends on the solution concept considered. Correlated equilibria arise from
considering the Nash equilibria of games with incomplete information. In
this paper we rely on (Interim Correlated) Rationalizability (ICR) (Dekel
et al., 2007), which is an extension of correlated rationalizability (Bernheim,
1984; Pearce, 1984) from complete information to incomplete information.

A correlated equilibrium is given by an information structure together
with a Bayesian Nash equilibrium of the corresponding game with incom-
plete information. When considering information design, correlated equilib-
ria thus provide weak implementation of the target outcome distribution:
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there exists a Nash equilibrium of the game with incomplete information
that yields that outcome distribution. The concept implicitly assumes that
the designer has the power not only to disseminate information but also to
enforce coordination on a Nash equilibrium between players.

Rationalizability does not assume coordination on an equilibrium but
only common knowledge of Bayesian rationality, hence iterative deletion of
(strictly) dominated strategies. It is a set solution concept, and in gen-
eral, more than one outcome can survive the iterative deletion of dominated
strategies. Rationalizable distributions include the set of distributions that
are implementable in dominant strategies. Implementation in rationalizable
strategies is thus both weaker than implementation in dominant strategies,
and stronger than Nash implementation.

Our main result, Theorem 5.2, is a complete characterization of the set
of rationalizable outcome distributions for any finite game. We also provide,
for each such rationalizable outcome distribution, the construction of an in-
formation structure that implements it. The class of information structures
so obtained admits a simple description using finitely many parameters.

To obtain our characterization, we establish a revelation principle for
ICR. By such a result, we mean a canonical space of signals and a family
of distributions on this space such that every implementable distribution is
obtained through a distribution in this family. We seek the smallest possible
canonical space. It is already known (see the e-mail game from Rubinstein,
1989) that information structures with finite support are not a large enough
class to generate all possible outcome distributions in finite games. It was
also shown by Dekel et al. (2005) that canonical information structures on
the universal type space Mertens and Zamir (1985) are precisely identified to
rationalizable action sets in all possible games, while Gossner and Mertens
(2001) established a similar result for zero-sum two-player games. However,
universal type spaces are too large and complex to permit an operational
study of rationalizability in a given game, which is an important challenge
we overcome. An operational and sufficient set of signals must thus be larger
than finite, and at most countably infinite.

In correlated equilibria, when applying the revelation principle, a signal
for a player is identified with an action recommendation for this player. It
is without loss of generality to focus on distributions over signals such that
following the recommendations is incentive compatible for each player. If we
generalized this principle to ICR, the set of signals would correspond to the
set of rationalizable action sets for a player, and upon receiving a certain
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signal, the set of rationalizable actions would precisely be that signal. Such
a generalization cannot work, however, as the collection of rationalizable sets
in a finite game is finite, and, as noted above, finite information structures
are not sufficient to generate all rationalizable distributions.

To understand our revelation principle, we need to distinguish the two no-
tions of an ICR set versus an ICRhierarchy. A type of a player in a Harsanyi
type space (Harsanyi, 1967) is given by a belief on other players’ types and
the payoff-relevant state of nature. To such a type corresponds a set of
undominated actions in the game, which constitute the 1st level of that
type’s ICRhierarchy. Once a player with a certain type assumes that none
of her opponents’ types choose a dominated action, that player can elim-
inate further all dominated actions. We thus obtain the 2nd level of the
type’s ICRhierarchy. This elimination process defines a (non-increasing)
ICRhierarchy for each possible type, and the ICR set of the type is the limit
set, also given by the intersection, of the hierarchy. While the family of
ICR sets in a game is finite, the family of ICRhierarchies is countable.

We show the following revelation principle result: a type of a player in a
Harsanyi type space is associated with both an ICRhierarchy of that player
and a belief over other players’ ICRhierarchies. This ICRhierarchy and be-
lief viewed itself as a Harsanyi type, is associated with an ICRhierarchy that
coincides precisely with itself. Hence, the countable set of ICRhierarchies is
sufficient to establish a revelation principle. Furthermore, given any distri-
bution on ICRhierarchies, we show that this distribution arises from some
common prior Harsanyi type space if and only if it satisfies a family of obe-
dience constraints that are expressed directly on the distribution.

Thus, the set of distributions on ICRhierarchies is entirely character-
ized by these obedience constraints. However convenient this representation
is, it is still countably dimensional and entails countably many obedience
constraints. On the other hand, if one is interested in the outcomes of a
game, characterized by ICR sets, ICRhierarchies contain redundant infor-
mation, as multiple ICRhierarchies converge to the same ICR set. Conse-
quently, one is interested in studying an appropriate subclass of distribu-
tions on ICRhierarchies which would be low dimensional and at the same
time yield every possible distribution on ICR sets.

We show that an appropriate class consists of what we call Stationary
Canonical Automaton Markov Priors (or SCAMP for short). Starting with
any game we construct an automaton, given by a finite set of states Ω together
with an action set in the game for each player at each state. There is an
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initial state at which each player is assigned their full action set. We say
that a probability distribution on K × Ωn is a SCAMP if it 1/ satisfies the
obedience constraints (it is thus a Canonical Prior), 2/ is Markovian and 3/
is such that the limit distribution of the Markov chain is the same as the
distribution on terminal states obtained after a finite number of iterations
(Stationarity). The first property ensures that the distribution of states of
nature and hierarchies arises from a common prior, and provides a common
prior that implements it, which is the distribution on the automaton paths
itself. The second property implies that the class of information structures
and processes considered is finitely dimensional and parametrized, and simple
to generate. Finally, the third property ensures that the set of SCAMP can
is characterized by the Obedience Constraints on finite histories. Therefore,
SCAMP provides a finitely dimensional class of processes characterized by
finitely many equations.

Our Theorem 5.1 shows that for any finite game, there exists a finite au-
tomaton such that all distributions on ICR sets are induced by SCAMP on
this automaton. Thus, SCAMP provides a finitely dimensional parametriza-
tion of distributions over ICRhierarchies that induce all possible distributions
on ICR sets. Because of the revelation principle above, every SCAMP can
also be viewed as an information structure that induces the relevant rational-
izable distribution. Hence, SCAMP provides a sufficient class of information
structures for the design of information under ICR. Since they are finitely
generated, they provide a simple class of information structures against which
all information design and robustness under ICR can be benchmarked.

State-of-the-art results on information design under rationalizability Mor-
ris et al. (2020) and on robustness to incomplete information Oyama and
Takahashi (2020) provide a good understanding of, but are limited to, bi-
nary action supermodular games. The method used in these papers relies
on information structures that can be reinterpreted as Markovian under the
assumption that a state of the automaton corresponds to a profile of action
sets to the players.1 For binary supermodular games, our automaton has pre-
cisely this property. For more general games, we show that the appropriate
automaton possesses in general several states with the same action sets for
all players. Our contribution thus sheds light on the reasons that explain the

1Other papers that use Markovian information structures include the original email
game Rubinstein (1989) and global games Carlsson and Van Damme (1993); Morris and
Shin (2003).
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current literature limitations and offers a construction that overcomes these.
We use SCAMP to obtain a characterization of the set of rationalizable

distributions in a game. We show that this set of probability distributions
is given by a finite family of linear inequalities, from which it follows that it
is a convex polyhedron. The structure of rationalizable distributions is thus
simple and similar to that of correlated equilibrium distributions. This linear
structure is also a virtue when considering applications.

The rest of the paper is organized as follows. In Section 2 we illustrate
our concepts and results in a game of technology adoption. We present the
model in Section 3 and show how rationalizable hierarchies are generated
through a finite automaton in Section 4.1. In Section 5.1 we characterize
rationalizable distributions.

2 Example: A Technology coordination game

We illustrate the concepts and results of the paper in a game of technology
coordination. Two players, 1 and 2, each choose between technologies a and
b to engage in a joint project. Player 1 has a preference for technology b, and
player 2 for a. There are two states of nature. In the good state, denoted
G, the project is successful if players coordinate on the same technology, and
payoffs in that state are those of a battle of sexes. In the bad state, denoted
B, the project fails and it is a dominant strategy for each player to stick to
their preferred technology.

a b
a 2,1 0,0
b 0,0 1,2

G

a b
a 0,1 0,0
b 2,2 1,0

B

Consider a discrete set of types Ti for each player i, and a common prior
probability P over {G,B}×T1×T2, with marginal having full support on each
Ti. A triple k, t1, t2 is drawn according to P , then each player i is informed
of her type ti. We denote conditional beliefs of player i by pi = P (⋅∣ti).

Given player 1’s beliefs on the state of nature, a dominates b (irrespec-
tively of player 2’s choices) iff

p1(G) > p1(B).
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Note that there are no beliefs of player 1 for which b dominates a, as if player
2 plays a, a is a best-response of player 1 no for every belief on the state of
nature.

For player 2, b dominates a iff

p2(G) > p2(B),

and there are no beliefs such that a dominates b.
For n ≥ 1, let us denote Rn

i = Rn
i (ti) the set of actions which survive n

rounds of deletion of strategies given i’s beliefs. We just have established:

R1
i (ti) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a if i = 1 and pi(B) > pi(B)
b if i = 2 and pi(B) > pi(G)
ab if pi(G) ≥ pi(B)

where for convenience a denotes {a}, b denotes {b} and ab denotes {a, b} For
the next levels of elimination, simple algebra shows that for player 1:

Rn+1
1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a if 3p1(Rn
2=a,G) − p1(G) > 2p1(B) − p1(Rn

2=b,B)
b if p1(Rn

2=a,B) + p1(B) > 2p1(G) − 3p1(Rn
2=b,G)

ab otherwise

and for player 2:

Rn+1
2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a if p2(Rn
2=b,B) + p2(B) > 2p2(G) − 3p2(Rn

2=a,G)
b if 3p2(Rn

2=b,G) − p2(G) > 2p2(B) − p2(Rn
2=a,B)

ab otherwise

A few remarks are in order. As already stated, at the first level, player 1
may eliminate a, but not b, while player 2 may eliminate b but not a. If player
1 doesn’t eliminate b at the first level, she may eliminate a at the second level
if she believes with high enough probability that player 2 eliminated a at the
first level. There are no beliefs at which player 1 eliminates b at the second
level while not having eliminated it at the first level. Symmetrically player
2 may eliminate a at the second level but not at the first. More generally, if
Rn

1 = ab, for n odd we may have Rn+1
1 = ab or Rn+1

1 = a but not Rn+1
1 = b and

for n even we may have Rn+1
1 = ab or Rn+1

1 = b but not Rn+1
1 = a. A symmetric

property holds for player 2.
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The possible ICR hierarchies for each player are summarized on the au-
tomaton of figure 1. The state labeled with“start for Pi”, is the initial (or
0-th) level of for player i, R0

i = ab. The sequences of state labels starting
with the initial state for player i and following the arrows, potentially ending
in an absorbing state, are the sequences R0

i = ab, R1
i , . . . ,R

n
i , . . . that appear

with positive probability in some common prior model.

abstart for P1 ab start for P2

b a

Figure 1: Automaton for one player in the technology example. There are 4
states and each state contains an action set. The initial state is on the left
(player 1) or on the right (player 2). Double circled states are terminal ones.

Figure 2 allows to visualize the possible joint ICR hierarchies for both
players as the set of infinite sequences starting at the initial state and that
follow arrows, possibly reaching a terminal state.

Let us call Ω the set of 16 states of figure 2. Since every pair of types
(t1, t2) in a type space can be mapped to a path in the automaton, it follows
that every prior P induces a joint probability distribution on K × ΩN. We
are now asking the question: what is the set of such possible distributions
on paths when P varies?

Note that to such a distribution on K ×ΩN is associated an information
structure in which K,ω1, . . . , ωn, . . . is drawn according to P , and player i is
informed of the i-th coordinates ω1

i , . . . , ω
n
i , . . . of ω

1, . . . , ωn, . . ..
Our revelation principle (Theorem 4.2) shows that P arises as a distribu-

tion on K and type hierarchies from some information structure if and only
if it arises from itself viewed as an information structure. Furthermore, this
is the case if and only if, for every n ≥ 0, player i’s action set ωn

i associated
to ω is precisely Rn

i . From the above, this is characterized for player 1 by
the system of equations:
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ab
ab

start

ab
ab

b
a

a
b

ab
a

ab
a

b
ab

b
ab

a
ab

a
ab

ab
b

ab
b

a
a

b
b

a
a

b
b

Figure 2: Automaton for both players in the technology example. Each state
contains an action set for player 1 (top) and for player 2 (bottom). Arrows
indicate possible transitions.

ωn+1
1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a if 3p1(ωn
2=a,G) − p1(G) > 2p1(B) − p1(ωn

2=b,B)
b if p1(ωn

2=a,B) + p1(B) > 2p1(G) − 3p1(ωn
2=b,G)

ab otherwise

and for player 2:

ωn+1
2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a if p2(ωn
2=b,B) + p2(B) > 2p2(G) − 3p2(ωn

2=a,G)
b if 3p2(ωn

2=b,G) − p2(G) > 2p2(B) − p2(ωn
2=a,B)

ab otherwise

These equations, which we call Obedience Constraints, are expressed di-
rectly on the probability distribution P on K ×ΩN.

The revelation principle thus fully characterizes the possible distributions
of (k, (Rn

1)n, (Rn
2)n) that may arise in any common prior model. It also char-

acterizes information structures that yield these distributions, as canonical
information structures in which each player i is informed as the sequence
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of i-th coordinate of all states of the automaton, and where, the n-th state
contains precisely the n-th ICR sets for both players.

Now that we understand how distributions on ICR hierarchies can be
obtained through the automaton, we move on to the characterization of ra-
tionalizable distributions. Remember that for a type ti of player i in a type
space, the set of rationalizable distributions is obtained as R∞i = R∞i (ti) =
∩nRn

i (ti). We say that a distribution µ on K × ({ab, a, b})2 is rationaliz-
able if there exits a common prior P such that the induced distribution of
(k,R∞1 ,R∞2 ) is µ.

Our SCAMP revelation principle, Theorem 5.1 shows that rationalizable
distributions are precisely those implemented by a particular type of informa-
tion structure, called SCAMP for Stationary Canonical Automaton Markov
Prior. A SCAMP is a process on the automaton that 1/ is Markovian 2/
satisfies Obedience Constraints and thus is Canonical and 3/ is Stationary.

We now turn to an explanation of each of these properties and their
consequences.

A Markov process is given by a probability on states of nature, and, for
each state of the automaton and state of nature, by a transition to states on
the automaton. It is thus given by a finite number of parameters only.

Consider a Markov process on the automaton of Figure 2. Assume that
for some k, the process reaches a state where only one player has eliminated
an action, such as a state in which the action sets are ab for player 1 and b for
player 2. Then, either the process will cycle between the two states with the
same action sets forever, or player 2 will eventually eliminate action b as well.
For the sake of the example, we focus on point rationalizable distributions,
which support is included in K × {a, b}2. These distributions are of interest
as they are associated uniquely with an expected payoff in the game. In
this case, the distribution on terminal nodes is unchanged by assuming that
the first state with action sets ab, a transitions directly to the corresponding
state with action sets a, a. By applying the same transformation whenever
possible, we obtain a Markov chain of the form of figure 3. Furthermore,
it is possible to show that this transformation doesn’t violate the obedience
constraints whenever are satisfied by the original process.

Now, for a fixed state of nature, the process cycles between the two lower
states a certain number of times, before it exits and reaches a terminal state.
Conditional on exiting during a cycle, the probability of reaching terminal
nodes is independent of the number of cycles. This implies the following
stationarity property: the probability on terminal nodes of the Markov chain
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is given by the conditional probability on these nodes after 3 stages of the
process.

ab
ab

start

ab
ab

b
a

a
b

ab
a

b
ab

a
ab

ab
b

a
a

b
b

a
a

b
b

pk1

qk1

pk2 qk2

pk3 pk4 qk3 qk4

Figure 3: SCAMP generating point distributions. When a single arrow leaves
a state, this arrow has probability 1. Transitions may depend on the state
of nature k ∈ {G,B}.

Stationarity thus allows to compute the implemented distribution from
the distribution in a finite number of iterations, 3 in this example. Further-
more, we show that whenever a distribution satisfies the OC on the first
iterations of the process, there exists a SCAMP that yields the same out-
come distribution on terminal nodes. Therefore, all that needs to be done is
to characterize the set of possible distributions that satisfy the OC on the
first iterations, in our example the set of distributions P 3 on k,ω1, ω2, ω3 that
satisfy OCs. This yields a characterization of the set of rationalizable distri-
butions as a (not necessarily closed) convex polyhedron. For the technology
adoption game, we illustrate the payoffs generated by point distributions in
Figure 4.

The set of point rationalizable distributions, hence their payoffs, is a sub-
set of correlated equilibria and of their payoffs. The reason is that, rational-
izability is a more permissive concept than Nash equilibrium, and therefore
rationalizable implementation is more stringent than correlated implementa-
tion.
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Figure 4: Payoffs generated by correlated equilibria (in red) and by point
rationalizable distributions in the technology choice game.

3 Model

We fix a finite set I of players and a finite set K of states of nature. We also
fix a payoff structure u, given by a finite action set Ai and a payoff function
ui∶K × A → R for each player i.2 An common prior, denoted P , is given
by a family of measurable type spaces Ti, a probability distribution P over
K × T admitting a conditional probability P (⋅∣⋅)∶Ti → ∆(K × T−i) for every
player i such that for every k ∈K, 1) ti ↦ P (k,X−i∣ti) is measurable for every
measurable set X−i ⊆ T−i and 2) P (k,Xi ×X−i) = ∫Xi

P (k,X−i∣ti)dP (ti), for
every k ∈K and measurable sets Xi ⊆ Ti, X−i ⊆ T−i.

A game with incomplete information is a pair (u,P ), where u is a payoff
structure and P is a common prior.

Interim Correlated Rationalizability (Dekel et al., 2007) is defined as fol-

2For any mapping f ∶X → Y and any subset E ⊆ X we write f(E) ∶= {f(x) ∶ x ∈ E}.
For a family of sets (Xi)i∈I , we let X =∏iXi and X−i =∏j≠iXj , for i ∈ I. For a family of
maps fi∶Xi → Yi, we let f ∶X → Y be given by f(x) = (fi(xi))i for x ∈X and f−i∶X−i → Y−i
by f−i(x−i) = (fj(xj))j≠i for x−i ∈ X−i. Given a measurable set X, ∆(X) denotes the set
of probability distributions on X. A marginal on coordinates x1, . . . , xn of a distribution
P ∈∆(∏ℓXℓ) is denoted margx1,...,xn

(p).
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lows.3 Let Bi denote the collection of non-empty subsets of Ai, and define
a conjecture for player i as a map σi ∶ K × B−i → ∆(A−i) such that the
support of σi(k, a−i) is included in b−i for every k ∈ K and b−i ∈ B−i. A
belief p ∈ ∆(K ×B−i) and a conjecture σi induce a probability distribution
⟨σ, p⟩ ∈∆(K ×A−i) given by:

⟨σi, p⟩(k, a−i) = ∑
b−i∈B−i

p(k, b−i) σi(k, b−i)(a−i). (3.1)

Player i’s best-reply map bri∶∆(K ×B−i)→ Bi is defined by:

bri(p) =⋃
σ
{argmax

ai∈Ai

E⟨σ,p⟩ui(⋅, ai, ⋅)} . (3.2)

The ICR-hierarchy (Rm
i (ti))m≥0 of a type ti ∈ Ti is defined iteratively:

i) For every i ∈ I and ti ∈ Ti, R0
i (ti) = Ai,

ii) For m ≥ 0, P (⋅∣ti) ∈∆(K ×T−i) and the (measurable) map Rm
−i from T−i

to B−i induce a belief P (⋅∣ti) ○ (id ×Rm
−i)−1 on K ×B−i. Rm+1

i (ti) is the
set of best-responses to this belief:

Rm+1
i (ti) = bri(P (⋅∣ti) ○ (id ×Rm

−i)−1). (3.3)

The set of rationalizable actions associated to ti is

R∞i (ti) =⋂
m
Rm

i (ti). (3.4)

The outcome distribution µP on K×B induced by P through ICR is given
by:

µP = P ○ (id ×R∞)−1. (3.5)

4 Rationalizable Hierarchies

In this section, we show that ICRhierarchies possess a recursive structure
that is characterized by a finite automaton, and characterize the distributions
of ICRhierarchies that arise in common priors model.

3Our presentation slightly differs from (Dekel et al., 2007) but the two definitions are
equivalent.
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4.1 ICR hierarchies and Strategic Automaton

We define the set of ICRhierarchies as the set of all possible hierarchies
arising from common prior models.

Definition 4.1 (ICR -hierarchies). The set of ICR hierarchies is the minimal
subset S ⊆ BN so that for every common prior model P and every t in the
support of P , (Rm(t))m ∈ S.

An automaton is a triple (Ω, β,⪯) given by a finite set of states Ω together
with an action map βi∶Ω → Bi for every player i and a binary successor
relation ⪯ on states. A cycle is a collection of states c = {ω1, . . . , ωm} so that
ω1 ⪯ ⋯ ⪯ ωm ⪯ ω1. We say that ⪯ is a tree of cycles if the following two
properties are satisfied

(i) Every ω ∈ Ω is element of at most one cycle.

(ii) Every ω ∈ Ω has at most one predecessor that is not in the same cycle
as ω.

Definition 4.2 (Strategic Automaton). An automaton (Ω, β,⪯) is a strategic
automaton if ⪯ is a tree of cycles and

S = {(β(ωm))m ∶ ∀ m ≥ 0, ωm ⪯ ωm+1}.

For every m ∈ N, let Sm = {(s0, . . . , sm) ∶ s ∈ S}. We now sketch a
construction of a strategic automaton.

Construction 4.1 (Construction of a Strategic Automaton). We will con-
struct an automaton from the set S. Let ω0 = S and βi(ω0) = Ai. For any
m ∈ N and a truncated sequence (s0, . . . , sm) ∈ Sm, define the set of m-order
tails and action labels for any player i,

ωm(s0, . . . , sm) = {(sm, sm+1, . . . ) ∈ BN ∶ (s0, . . . , sm, sm+1, . . . ) ∈ S}
βm
i (ωm(s0, . . . , sm)) = smi .

(4.1)

Define the collection of m-order tails Ωm = {ωn(s0, . . . , sn) ∶ s ∈ S,n ≤ m}.
Define the successor relation for any ω,ω′ ∈ Ωm, ω ⪯m ω′ if and only if

{(b1, b2, . . . ) ∶ (b0, b1, b2, . . . ) ∈ ω′} ⊆ ω. (4.2)

We obtain a triple (Ω, β,⪯), where Ω = ⋃m∈NΩm, for every m ∈ N, if ω,ω′ ∈
Ωm then βi(ω) = βm

i (ω) and ω ⪯ ω′ ⇐⇒ ω ⪯m ω′. It remains to show that
this triple is a strategic automaton.
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The result below states that (Ω, β,⪯) is a strategic automaton, and in
particular that the set Ω is finite.

Theorem 4.1. (Ω, β,⪯) is a strategic automaton.

We give a sketch of the argument for Theorem 4.1 and provide the proof
in the Appendix. For any collection of action set profiles B′ ⊆ B define its
maximal subset maxB′ as the collection of b ∈ B′ so that there does not exist
b̂ ∈ B′ ∖ {b} satisfying

bi ⊆ b̂i, ∀ i. (4.3)

For the proof of Theorem 4.1 we proceed by partitioning S into first-order
maximal sequences, second-order maximal sequences, etc. First-order max-
imal sequences are sequences that only make maximal transitions. Second-
order maximal sequences are sequences that branch out of first-order maximal
sequences at some round m and make maximal transitions henceforth. We
define higher-order maximal sequences analogously. We first argue that the
entries ofm-order maximal sequences are best replies to beliefs onm−1-order
maximal sequences. Moreover, the number of m-order maximal sequences
that branch out of a given m− 1-order maximal sequence at a given round n
is bounded, where this bound depends only on the size of the action sets.

Starting with first-order maximal sequences, we compute for every n the
set of second-order maximal sequences that branch out of first-order maximal
sequences at round n. Since the set of tails of second-order maximal sequences
that branch out at a given n is bounded, the set will begin to cycle over n.
Through an inductive argument, we then show that tails of all higher-order
maximal sequences that branch out of lower-order sequences at any round
n will cycle over n with some periodicity z. Since every sequence is maxi-
mal of some order, we conclude that transitions after a sequence s0, . . . , sm

depend on this sequence modulo cycles of size z. Hence the transition corre-
spondence, which for every m maps a truncated sequence (s0, . . . , sm) ∈ Sm

to the collection of action set profiles sm+1 so that (s0, . . . , sm, sm+1) ∈ Sm+1,
depends on a finite summary statistic of the collection of all truncated se-
quences. We obtain a representation of the Automaton constructed above,
where the strategic state of a truncated hierarchy depends on all the action
set profiles it has visited modulo cycles of length z.
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4.2 Revelation principle

We now characterize the distributions on K and ICR hierarchies arising
from common priors as well as information structures that implement those
hierarchies through a revelation principle.

Every common prior P induces, through ICR and the identity on K, a
distribution PR on K ×BN. Let P denote the set of such distributions. The
following result characterizes the set of such distributions. Note that every
distribution P ∈ ∆(K × BN) can be viewed itself a common prior in which
BN

i is the set of types for player i, (k, (bni )i,n) is drawn according to P , and
each player i is informed of her corresponding sequence of action sets (bni )n.

Theorem 4.2 (Revelation principle). For P ∈∆(K×BN) the three conditions
are equivalent:

1. P ∈ P

2. P = PR, i.e. P is the image of itself viewed as a common prior

3. P (s0=A) = 1 and P satisfies the family of obedience constraints:

smi = bri(PS(k, sm−1−i ∣si)) for a.s. in si = (smi )m (4.4)

Hence every distribution on K and ICRhierarchies can be implemented
through itself viewed as a common prior. In turn, these distributions is
entirely characterized through the Obedience Constraints.

5 Rationalizable Distributions

In this section we characterize the set of distributions on K × B that arise
from common prior models.

Given a Strategic Automaton (Ω, β,⪯), a path is a sequence ω = (ω0, ω1, . . . )
satisfying ωm ⪯ ωm+1 for all m ∈ N. For every player i a path gives rise to a
sequence of action sets si = (βi(ω0), βi(ω1), . . . ).

A process on the automaton is a probability measure P ∈ ∆(K ×ΩN) so
that every sequence ω = (ω0, ω1, . . . ) in its support is a path. A process on
the automaton P is Markov if for every m ∈ N,

P (ωm+1∣k,ω0 . . . ωm) = P (ωm+1∣k,ωm), P a.s. (5.1)
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It is canonical if
R(s) = s, P a.s. (5.2)

A process on the automaton defines a common prior, where each player
i is privately informed of the sequence si. We will thus refer to the sequence
si as a type. For a process P , we say that a type si of player i satisfies the
Obedience Constraint at level m ∈ N when

smi = bri(margk,sm−1−i
(P (⋅, ⋅∣si))), P a.s. (5.3)

Note that P is canonical if and only if Obedience Constraints are satisfied for
every type of every player and every round. For canonical Markov processes,
k and the state ωm at round m of a path is a sufficient statistic for the
distribution over ωm+1 and thus also over Rm+1.

The entries of every path ω = (ω0, ω1, . . . ) converge to a cycle c∞(ω) ⊆ Ω,
given by the set of states along the path are visited infinitely often. For
process P let C∞,P ∶= {c∞(ω) ∶ margΩN(P )(ω) > 0} denote the collection of
cycles which are limits of paths in the support of P .

For every process P , player i, round m ∈ N and sequence si, define the
associated information set, Imi,P (si), as the set of states of nature and au-
tomaton states that are in the support of type si’s beliefs at round m,

Imi,P (si) = {(k,ω) ∈K ×Ω ∶ P (k,ωm = ω∣si) > 0}. (5.4)

The collection of si’s information sets is denoted Ii,P (si) ∶= {Imi,P (si) ∶m ∈ N}.
A process P is stationary after round m if for every k ∈ K, every cycle

c ∈ C∞,P and ω satisfying ω0 ⪯ ω,

∑ω∶ωm∈cP (ω∣k,ω1 = ω)
∑c̃∈C∞,P

∑ω∶ωm∈c̃P (ω∣k,ω1 = ω)
= ∑

ω∈c−1∞ (c)
P (ω∣k,ω1 = ω), (5.5)

and for every player i,

Ii,P (si) = Ii,P (ŝi) Ô⇒ P (k,ω1∣si) = P (k,ω1∣ŝi), P a.s. (5.6)

We say that P is stationary if it is stationary after some finite round m.
Stationarity thus imposes two requirements. First, it requires that, condi-
tional on the first transition and k, the limit distribution of P be given by
the distribution on terminal nodes after m rounds. Second, it requires the
finite collection of information sets of a player’s action set sequence to be a
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sufficient statistic for her belief about the first transition and k. Since ac-
tion labels are constant on cycles, the first condition allows us to recover the
outcome distribution of a process by considering its distribution on a finite
truncation of all paths. Note that for a Markov process that is stationary
after round m, every information set is reached by some sequence within the
first m rounds. We will show that for stationary Markov processes, checking
a finite number of obedience constraints is enough to establish if the process
is also canonical.

Definition 5.1 (Stationary Canonical Automaton Markov Priors, SCAMP).
A process on a Strategic Automaton is SCAMP if it is a Stationary, Canon-
ical and Markov.

We now show that SCAMP is a finite dimensional class of processes.
For any information set I ∈ Ii,P (si) of player i’s type si, define its maximal
elements

I = {(k,ω) ∈ I ∶ ∀ω′ s.t. ω ⪯ ω′, (k,ω′) ∉ I} (5.7)

Conditional obedience constraints for a player i with type si at m ≤ N
take the form

smi = bri(margk,sm−i(P (⋅, ⋅∣si, I
m
i,P (si)))), P a.s. (5.8)

Lemma 5.1 (SCAMP is Finite Dimensional). Every Markov process P that
is stationary after round m on a Strategic Automaton that satisfies obedience
and conditional constraints for all n ≤m is SCAMP.

We prove Lemma 5.1 as follows: By definition, a stationary Markov pro-
cess only has a finite number of first-order beliefs. We need to show that if
obedience and conditional obedience hold on the first m coordinates, obedi-
ence holds everywhere. To show this, we show that, conditional on k and the
first transition ω1, the longer a sequence stays at a given information set, the
more probability it assigns to higher ranked automaton states. Since action
labels of automaton states are monotonic with respect to this ranking, we
conclude that if obedience holds on the first m rounds, then “sub-obedience”
must hold everywhere: Every action label contains all best-replies to beliefs
on lower action labels. We then use conditional obedience to show that this
containment is never strict. By conditional obedience, no matter how much
mass is assigned to the highest ranked automaton states in the information
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set, i’s best reply remains unchanged. We then conclude that obedience must
hold everywhere.

We show that there is a strategic automaton so that all the SCAMP it
induces are sufficient to obtain all outcome distributions.

Theorem 5.1 (Sufficiency of SCAMP). For every finite game there exists a
strategic automaton so that the set of SCAMP induce all outcome distribu-
tions.

Depending on the game, the strategic automaton with this property may
be larger than the automaton we constructed in Section 4.1. This can happen
for three reasons:

(i) If the probability of leaving a state whose label contains more than
one action for a player is greater than zero under a SCAMP, then that
state will have probability zero in the corresponding limit distribution.
Some outcome distributions may allow for non-singleton outcomes to
be realized as well as strict subsets of them. In this case we may need to
duplicate the states with non-singleton labels to allow for some paths
to converge at that a state and others to leave the state.

(ii) As we have seen in Example 2, cycles with multiple automaton states
can arise. For outcome distributions whose support on ICR-hierarchies
is restricted, additional cycles may be required to achieve this outcome.
Indeed, suppose we added a third state k = Bad state 2 to the payoffs
in Example 2. At Bad state 2, payoffs are given by the matrix below

a b
a 0,−1 −1,−1
b 0,0 −1,0

Bad state 2

With this additional state, both players’ first order rationalizable action
sets can be one of a, b or {a, b}. So in Figure 2, both automaton states
in the cycle now have the same transitions. Then ICR-hierarchies can
be described with a strategic automaton that has a cycle of a single
state as the one shown in Figure 5 below:
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a, b

a, b

start

a

b
b

a

a, b

b

a

a, b
b

a, b
a, b

a

⋮⋮ ⋮ ⋮

Figure 5: Cycle generating ICR-hierarchies when the Bad state 2 is added.

If we want to generate the outcomes when the probability of Bad state
2 is zero with SCAMP, we need the automaton with a larger cycle as
the transitions with under this restriction are not Markovian with the
cycle in Figure 5.

(iii) To obtain Stationarity, we want the automaton to be balanced after
every initial state: For every initial state ω0, the collection of paths
that start at ω0 and reach a terminal state pass through the same
number of automaton states and cycles.

Conditions (i) - (iii) are extensions of the automaton we constructed in
Section 4.1 and can be obtained by duplicating states. We provide a general
construction for a strategic automaton that is large enough for SCAMP to
implement every outcome in Appendix A.2. In particular, we provide a
bound on the number of duplicates that are necessary.
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abc

abc

start

⋱

bc

bc

bc

c

⋰

1 − p1k,m − p2k,m

p1k,m
p2k,m

1 − q1k,m,n − q2k,m,n

q1k,m,n

q2k,m,n

abc

abc

start

⋱

bc

bc

bc

c

⋰

1 − η

ηp1k
ηp2k

1 − η

ηq1k

ηq2k

Figure 6: Averaging process to SCAMP.

For every k ∈K, consider a process on the paths of the joint Automaton
in the left panel of Figure 6.

1. We first compute the average exit probability for any pair of successive
cycles.

p1k =
∑m p1k,mP (m)

∑mP (m)(p1k,m + p2k,m)
,

q2k =
∑n∑m p1k,mP (m∣n)q2k,m,nP (n)

∑m p1k,mP (m)∑n(q1k,m,n + q2k,m,n)P (n∣m)
,

(5.9)

where P (m) =∏l≤m(1−p1k,l−p2k,l) and P (n∣m) =∏l≤n(1−q1k,m,l−q2k,m,l).
This induces a Stationary Markov Prior P when we pick a constant cy-
cling probability η > 0. Note that the limit distribution of the Station-
ary Markov Prior coincides with that of (p1k,m, p2k,m, (q1k,m,n, q

2
k,m,n)n)m,

P
∞(bc, c) = p1kq2k =∑

n
∑
m

p1k,mP (m∣n)q2k,m,nP (n) = P∞(bc, c). (5.10)

The stationary distribution P
∞

of this Markov prior, that is, the limit
distribution on the terminal states depends only on the exit probability
plk, q

l
k.
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2. We then write down obedience constraints for the induced Stationary
Markov prior and see that η enters monotonically in the obedience
constraints. Consider a sequence for i player whose action is the bottom
entry in each automaton state, (abc, . . . , bc, . . . , bc, c, . . . ). If player i
considers two sequences possible: One where player −i switched to c
before her and one where −i did not. An obedience constraint of player i
at the round where she eliminates b on a game with payoffs ui(k, ai, a−i)
takes the form

0 < ηq2kp(k) min
a−i∈{b,c}

(ui(k, c, a−i) − ui(k, b, a−i))

+ q1kp(k) min
a−i∈{c}

(ui(k, c, a−i) − ui(k, b, a−i)).
(5.11)

If P satisfies obedience and η = 1, then by the linearity of our trans-
formation, the above inequality holds. The cycling probability enters
monotonically in every obedience constraint: The lower the cycling
probability the higher the probability that higher-ranked states are
reached at any given round. So a lower cycling probability encour-
ages eliminating more actions: If an agent is eliminating an action at
a certain round, she will do so in response to other agents eliminating
actions. However, she doesn’t know if she is on a path where other
agents eliminated their actions before her or after. Paths, where she is
the first to eliminate an action, will cycle longer through states where
no agent changes actions than paths where she is not. A lower cycling
probability means her beliefs assign less weight to her being the first
player to eliminate the action and thus causing the path to leave the
cycle. The fact that a lower cycling probability encourages eliminating
more actions then follows from the monotonicity of the best-reply op-
erator: The set of a player’s best replies decreases if her beliefs assign
more mass to smaller action sets. Hence the inequality (5.11) holds
for any choice of η. An important condition for this to work is that
the agent’s information set, i.e. the sequences they consider possible
does not change much. To ensure this, we need the right automa-
ton structure. As we have seen, this procedure would not work if the
left automaton had a cycle with two different transitions but the right
automaton remains unchanged: The transitions at even rounds are dif-
ferent from the transitions at odd rounds. In Appendix A.2 we provide
a general construction.
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5.1 Characterization of Rationalizable Outcomes

Fix a strategic automaton verifying the statement in Theorem 5.1 and let
m∗ = ∣Ω∣. A distribution p ∈∆(K ×Ωm∗) satisfies obedience constraints if for
0 <m ≤m∗ and all si = (βi(ω0), . . . , βi(ωm∗)) in the support of p,

smi = bri(margk,sm−1−i
(p(⋅, ⋅∣si))). (5.12)

Written out, expression (5.12) is a system of linear inequalities: For every
action a′i ∈ sm−1i ∖ smi there is ai ∈ smi so that

0 < ∑
(k,s−i,si)

p(k, sm−1∣si) min
σk∈sm−1−i

(ui(k, ai, σk) − ui(k, a′i, σk)), (5.13)

moreover, for every ai ∈ smi and every a′i ∈ Ai,

0 ≤ ∑
(k,s−i)

p(k, sm−1−i ∣si) max
σk∈sm−1−i

(ui(k, ai, σk) − ui(k, a′i, σk)). (5.14)

Let Om∗ ⊆∆(K×Ωm∗) denote the set of distributions on K×Ωm∗ that satisfy
obedience constraints. Let the set of terminal states of p ∈ ∆(K × Ωm∗) be
given by

X(p) = {(k,ωm∗) ∈K ×Ω ∶ p(k, (ω0, . . . , ωm∗)) > 0}, (5.15)

Letting pm
∗(k,ω) = ∑x∈Ωm∗ ∶xm∗=ω p(k, x), define the limit probability of p

p(k, b) =
∑ω∶β(ω)=b p

∗(k,ω)
pm∗(X(p))

. (5.16)

The limit probability p satisfies limit-obedience if for every b in its support
and every player i, bi = bri(p(⋅, ⋅∣bi)). Let O∞ ⊆ ∆(K ×B) denote the set of
probabilities satisfying limit-obedience.

LetO ⊆ O∞ denote the set of limit probabilities p satisfying limit-obedience
which are obtained from distributions in p ∈ Om∗ ,

O = {p ∶ p ∈ Om∗} ∩O∞. (5.17)

The relative closure of this set is a convex polyhedron:

Lemma 5.2 (Linearity of O). The relative closure of the set O is a convex
polyhedron.
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Indeed, clearly Om∗ and O∞ are polyhedra. Then the simple coordinate
projection of the polyhedron Om∗ of distributions onto the coordinates con-
sisting of the set of terminal paths and K is a lower dimensional polyhedron.
The only issue is that the scale is wrong. So consider the cone generated by
this lower dimensional polyhedron. For each point in the lower dimensional
polyhedron there is a unique positive number that scales it into a probability.
So the intersection with the cone and the simplex gives us the space we are
looking for. The cone and the simplex are polyhedra. So their intersection is
too. We now show that O coincides with the set of all outcome distributions.

Theorem 5.2 (Necessity and Sufficiency of O for SCAMP).

(i) Every SCAMP P induces a distribution pP ∈ O through its marginal
on K ×Ωm∗ so that the limit probability pP coincides with the outcome
distribution of P .

(ii) For every p ∈ O there exists SCAMP Pp so that the limit probability p
coincides with the outcome distribution of Pp.

Part (i) of Theorem 5.2 is an immediate consequence of the fact that P is
SCAMP. Part (ii) is constructive and follows the same steps as the proof of
Theorem 5.1. We thus obtain our characterization of outcome distributions:

Corollary 5.1 (Linearity of Outcomes). For every finite game, the set of
outcome distributions is equal to O. Its relative closure is a convex polyhe-
dron.
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A Appendix

A.1 Revelation Principle

Theorem 4.2 For P ∈∆(K ×BN) the three conditions are equivalent:

1. P ∈ P

2. P = PS, i.e. P is the image of itself viewed as a common prior

3. P satisfies P (s0 = A) = 1 and the family of obedience constraints:

smi = bri(PS(k, sm−1−i ∣si)) a.s. in si = (smi )m (A.1)

Proof. (1. Ô⇒ 3) Let P ∈ ∆(K × T ) be a common prior. The induced
profile of conditional probabilities (Pi ∶ Ti →∆(K ×T−i))i is a Harsanyi type
space and so the profile of maps ((Rm

i )m∶Ti → Si)i satisfies: for every player
i, ti ∈ Ti and m ∈ N,

Rm
i (ti) = bri(Pi(ti) ○ (id ×Rm−1

−i )−1). (A.2)

Then note that for every bi ∈ Bi, bri(bi)−1 ⊆ ∆(K × B−i) is convex. Write
P̃ ∶= P ○ (id ×R)−1 with conditional probabilities (P̃i∶Si → ∆(K × S−i)i and
so for all k ∈K, m ∈ N and s ∈ S so that P (R−1i (si)) > 0,

smi = bri (∫
{ti∶Rm

i (ti)=s
m
i }

Pi(ti) ○ (id ×Rm−1
−i )−1dP (ti∣Rm

i = smi ))

= bri (P̃i(si)) .
(A.3)

So P̃ satisfies (A.1), as required. (3. Ô⇒ 2) If P ∈∆(K×BN) satisfies (A.1)
then, in particular it is a common prior with type profiles given by S. Since
ICR is characterized exactly by (3.3), we deduce that P = PS. (2. Ô⇒ 1)
P = PS implies that P ∈ P, which concludes the proof.

A.2 Strategic Automata

A monotone stochastic transformation for player i is a map ρi∶K × B−i →
∆(B−i) so that for every b ∈ B and k ∈K,

b′−i ⊆ b−i, ∀ b′−i ∈ supp(ρi(k, b−i)). (A.4)
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Claim A.1 (Monotonicity of br). For any monotone stochastic transforma-
tion ρi∶K ×B−i →∆(B−i) and for any pi ∈∆(K ×B−i),

bri(pi ○ ρi) ⊆ bri(pi), (A.5)

where for all k ∈K and b−i ∈ B−i,
pi ○ ρi(k, b−i) ∶= ∑

b′−i∈B−i
ρi(b−i∣k, b′−i)pi(k, b′−i). (A.6)

Proof. Consider any conjecture σi∶K×B−i →∆(A−i) so that supp(σ(⋅∣k, b−i)) ⊆
b−i for all k ∈ K,b−i ∈ B−i. Now define the conjecture σi ○ ρi, given for every
a−i ∈ A−i, k ∈K,b′−i ∈ B−i by

σi ○ ρi(a−i∣k, b′−i) ∶=∑
b−i

σi(a−i∣k, b−i)ρi(b−i∣k, b′−i). (A.7)

Since ρi is monotone, the conjecture σi○ρi also satisfies the support constraint
of σi. Hence

⟨σi, pi ○ ρi⟩(k, a−i) = ∑
b′−i∈B−i

( ∑
b−i∈B−i

σi(a−i∣k, b−i)ρi(b−i∣k, b′−i))pi(k, b′−i)

= ∑
b′−i∈B−i

σi ○ ρi(a−i∣k, b′−i)pi(k, b′−i)

= ⟨σi ○ ρi, pi⟩(k, a−i).

(A.8)

Now the result is immediate from the definition of bri in expression (3.2).

LetB(0) andB(1) be two copies of the setB of action set profiles. Consider
a distribution p ∈ ∆(K × (B(0) × B(1))) on states of nature and transitions
on action set profiles so that for every i and every transition (s0i , s1i ) in the
support of p,

bri(marg
K×b(0)−i

p(⋅, ⋅∣s0i , s1i )) = s1i . (A.9)

Let P denote the collection of initial transition probabilities p ∈∆(K×B×B)
satisfying this best response condition.

Definition A.1 (p-Best-Reply Hierarchies). We define the set Sp of p-Best-
Reply Hierarchies recursively as follows:

Sm
p ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(s0, s1, . . . , sm) ∈ Bm+1 ∶

∃ pm ∈∆(K × (Sm
p )) s.t.

margk,(s0,s1)(pm) = p,
∀ i, ∀ 0 < ℓ ≤m,

sℓi = bri(margk,sℓ−1−i (p(⋅, ⋅∣s
m
i ))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Sp ∶= {(s0, s1, . . . ) ∶ ∀ m ≥ 0, (s0, . . . , sm) ∈ Sm

p }.

(A.10)
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Let

Sp ∶=
∞
⋃
m=1

Sm
p , (A.11)

denote the collection of all truncated sequences in Sp. Define the transition
correspondence on truncated sequences (s0, . . . , sm) ∈ Sp

κp(s0, . . . , sm) ∶= {b ∈ B ∶ (s0, . . . , sm, b) ∈ Sm+1
p }. (A.12)

By the revelation principle (Lemma 4.2), for any given p ∈ P, the sequences
Sp coincide with the set of ICR-hierarchies that can arise from common priors
P ∈ P satisfying

P ○ (id × (R0 ×R1))−1 = p. (A.13)

For any collection of action set profiles B′ ⊆ B define its maximal subset
maxB′ as the collection of b ∈ B′ so that there does not exist b̂ ∈ B′ ∖ {b}
satisfying

bi ⊆ b̂i, ∀ i. (A.14)

Let the maximal transition correspondence be defined as

κ̄p(s0, . . . , sm) ∶=maxκp(s0, . . . , sm), ∀ (s0, . . . , sm) ∈ Sp. (A.15)

For every truncated sequence (s1, . . . , sm) ∈ Sp, the set of sequentially maxi-
mal tails is defined as the following collection of sequences,

S̄p(s0, . . . , sm) ∶= {ŝ ∈ Sp ∶
∀ ℓ ≤m, ŝℓ = sℓ,

∀ ℓ >m, ŝℓ ∈ κ̄(ŝ0, . . . , ŝℓ−1)} . (A.16)

Claim A.2. For all m ∈ N and p ∈ P, ∣Sp(s0, . . . , sm)∣ ≤ 2∣B∣.

Proof. For any s ∈ Sp(s0, . . . , sm) let

Bm(s) ∶= {sn ∶ n ≥m}. (A.17)

Then for any distinct s, ŝ ∈ Sp(s0, . . . , sm) there must be a pair (b, b̂) ∈ Bm(s)×
Bm(ŝ) so that neither b ⊆ b̂ nor b̂ ⊆ b. Otherwise, the sequence which first
reaches a round with an action set profile that is strictly contained in that
of the other sequence would not make a maximal transition and thus not
be element of Sp(s0, . . . , sm). But then we have that there can only be as
many sequences as there are families B′ ⊆ sm where all elements inside B′

are ordered according to set-inclusion but contain elements which are not
comparable with some element in every other such family. The number of
such families is clearly bounded by the total number of subsets of B.
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For every subset C ⊆ Sp × BN, define the best-response operator on se-
quence pairs,

Bp(C) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s, s̄) ∈ Sp ×BN ∶

∃ p∞ ∈∆(K ×C) s.t.
margk,(s0,s1)(p∞) = p,
∀ i, ∀ m > 0,

smi = bri(margk,sm−1−i
(p∞(⋅, ⋅∣si)))

s̄mi = bri(margk,s̄m−1−i
(p∞(⋅, ⋅∣si, s̄i)))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A.18)

Let S1,p ∶= Sp(s0) denote the collection of sequentially maximal tails.
These are first-order maximal sequences.

R1
1,p ∶=

⎧⎪⎪⎨⎪⎪⎩
(s, s̄) ∈ S1,p ×BN ∶ s̄ ∈ ⋃

s̃1∈κp(s0)
Sp(s0, s̃1)

⎫⎪⎪⎬⎪⎪⎭
(A.19)

Given Rm−1
1,p , define

Rm
1,p ∶= {(s, s̄) ∈ Bp(Rm−1

1,p ) ∶
s ∈ S1,p,

s̄ ∈ ⋃s̃m∈κp(s0,...,sm−1) Sp(s0, . . . , sm−1, s̃m)
} (A.20)

Given (Rm
l−1,p)m∈N, we define the set of l-order maximal sequences

Sl,p ∶= ⋃
m∈N
{(s0, . . . , sm−1, s̄0, s̄1, . . . ) ∶ (s, s̄) ∈Rm

l−1,p} (A.21)

sequence (Rm
l,p)m∈N as follows: For m < l, let Rm

l,p ∶=Rm
l−1,p. For m ≥ l,

Rm
l,p ∶=

⎧⎪⎪⎨⎪⎪⎩
(s, s̄) ∈ Bp(Rm−1

l,p ) ∶
s ∈ Sl,

s̄ ∈ ⋃
s̃m∈κp(s0,...,sm−1)

Sp(s0, . . . , sm−1, s̃m)
⎫⎪⎪⎬⎪⎪⎭
. (A.22)

Note that construction Rm
l,p is “Markovian” in the sense that the tails s̄

that are being added only depend on beliefs with support on tails that were
added at Rm−1

l,p . We now show that all sequences in Sp are obtain this way:

Claim A.3. Sp = ⋃l∈N Sl,p.

Proof. We will show that for all m ≤ l,

{(s0, . . . , sm) ∶ s ∈ Sl,p} = {(s0, . . . , sm) ∶ s ∈ Sp},
Sl,p = {s ∈ Sl,p ∶ ∃ s̄ s.t. (s, s̄) ∈ Bp(Rm

l,p)}.
(A.23)
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For l = 1, the first condition holds by definition fo S1,p. Moreover, by the
monotonicity of bri, (Claim A.1) we conclude that S1,p is best-reply closed
and so the second condition also holds. Suppose now that both conditions
hold for l − 1. Then for m ≤ l,

{(s0, . . . , sm−1) ∶ ∃ s̄ s.t. (s, s̄) ∈Rm
l−1,p} = {(s0, . . . , sm−1) ∶ s ∈ Sp}. (A.24)

Then

{(s0, . . . , sm−1, s̃m) ∶ s ∈ Sl−1,p,
s̃m ∈ κp(s0, . . . , sm−1)

} = {(s0, . . . , sm) ∶ s ∈ Sp}. (A.25)

Since the second condition in (A.23) holds for l−1 we have that Rm
l−1,p ⊆Rm

l,p.
Then it must be that

{(s0, . . . , sm) ∶ Sl,p} = {(s0, . . . , sm) ∶ s ∈ Sp}, (A.26)

and so the result follows.

Claim A.4. There is finite z so that for all p ∈ P and for all m, l ∈ N,

Rm
l,p =Rm+z

l,p .

Proof. Fix p ∈ P. Define the set of sequences in Sl,p that branch out of Sl−1,p
at round n ∈ N,

Ŝl,n,p ∶= Sl−1 ∪ {s ∈ Sl,p ∶ ∀ ŝ ∈ Sl−1,p, sn ≠ ŝn}. (A.27)

Note that for every l ∈ N, every n ∈ N and for every sequence s ∈ Ŝl,n,p, there
is a distribution q ∈ ∆(K × Ŝl,n−1,p ∪ Sl−1,p) so that for all m ∈ N and every
player i,

smi = bri(margk,sm−1−i
(q(⋅, ⋅∣si))). (A.28)

We proceed by induction on l. Let l = 2. From Claim A.2 we obtain that
the cardinality of the set Ŝ2,n,p is bounded by 2∣B∣∣S2∣ < ∞ for all n ∈ N.
Moreover, we established in the proof of Claim A.3 that S1,p is best-reply
closed by appealing to the monotonicity property of bri (Claim A.1), i.e. for
all m ∈ N, S1,p ⊆ {s ∈ Sp ∶ ∃s̄ s.t. (s, s̄) ∈ Bp(Rm

1,p)}. Hence Bp will start to

cycle after some number z1,p ∈ N of iterations on R1
1,p: Rm

1,p = R
m+z1,p
1,p , for all

m ∈ N. For any l, note again that the set Ŝl,n,p is bounded by 2∣B∣∣Sl,p∣ < ∞.
Since Sl,p is a finite, best-reply closed set (see proof of Claim A.3), we deduce
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that Bp will again start to cycle after some number zl,p of iterations on R1
l,p:

Rm
l,p =R

m+zl
l,p .

Finally, note that there is ℓp < ∣B∣ so that for all l ≥ ℓp and all m ∈ N,
Rm

l,p = Rm
l+1,p - otherwise there would be a sequence which makes infinitely

many eliminations. Note that this bound is uniform over all p ∈ P. Since
∣Ŝn,l,p∣ ≤ 2∣B∣ also holds for all choices of p ∈ P, we deduce that supp∈P zℓp,p <∞.
But then there is a finite z (e.g. the least common multiple of all the finite
collection {zℓp,p ∶ p ∈ P}) so that ∀ p ∈ P, ∀ m, l ∈ N, Rm

l,p =Rm+z
l,p .

Claim A.5 (Automaton for Sp). There is an automaton (Ω, β,⪯) so that for
every p ∈ P and every sequence s ∈ Sp, there is a path (ω0, ω1, . . . ) so that

s = (β(ω0), β(ω1), . . . ).

Proof. For every p ∈ P, every truncated sequence (s0, . . . , sm) ∈ Sp and profile
b ∈ B define

m(b∣s0, . . . , sm) ∶= ∣{ℓ ≤m ∶ b = sℓ}∣. (A.29)

Define the summary statistic for z satisfying the statement in Claim A.4

ξz(s0, . . . , sm) ∶= ((s0, . . . , smin{z,m}), ξ̂z(s0, . . . , sm)), (A.30)

where ξ̂z(s0, . . . , sm) ∶= {(sℓ,m(sℓ∣s0, . . . , sm) mod z) ∶ ℓ ≤ m}. Then for
every p ∈ P and truncated sequences h,h′ ∈ Sp

ξz(h) = ξz(h′) Ô⇒ κp(h) = κp(h′). (A.31)

By Claim A.3 we obtain an automaton (Ω, β,⪯), where

Ω ∶= ⋃
p∈P
{ξz(h) ∶ h ∈ Sp, p ∈ P}

β(ξz(s0, . . . , sm)) ∶= sm, ∀ s ∈ S,m ∈ N,
ω ⪯ ω′ ⇐⇒ ∃s ∈ S s.t.

ω = ξz(s0, . . . , sm) and
ω′ = ξz(s0, . . . , sm+1).

(A.32)

For every P ∈ P let its support in S be denoted SP ∶= {s ∈ S ∶ ∑k∈K P (k, s) >
0}. Furthermore, let p =margk,s0,s1(P ). Since SP ⊆ Sp, we obtain the follow-
ing corollary.
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Corollary A.1. There is an automaton (Ω, β,⪯) so that for every P ∈ P
and every sequence s ∈ SP , there is a path (ω0, ω1, . . . ) so that

s = (β(ω0), β(ω1), . . . ).

The construction has shown the following three properties:

(i) If a cycle was left, it is never revisited.

(ii) If s and s′ reach a state ω at rounds m and n respectively, then the set
of states visited by s before round m equals the set of states visited by
s′ before round n.

(iii) All cycles have constant size z and for every cycle c and ω ∈ c there is
a unique state ω′ ∈ c so that ω ⪯ ω′.

We will use properties (i)-(iii) to establish the sufficiency of information
design via SCAMP and obtain a linear characterization of all achievable
outcome distributions.

A.3 Sufficiency of SCAMP

For P ∈ P, we denote by νP its outcome distribution. Say that P,P ′ ∈ P are
outcome-equivalent if νP = νP ′ .

We say that an outcome distribution is stronger than another if condi-
tional on a state of nature the latter first order stochastically dominates the
former with respect to set-inclusion for all players:

Definition A.2 (Stronger Outcome Distribution). For ν, ν′ ∈ ∆(K ×B) we
say that ν is stronger than ν′ if there exists monotone stochastic transforma-
tion ρ∶K ×B →∆(B) so that

ν(k, b) = ν′ ○ ρ(k, b) ∶=∑
b′
ρ(b∣k, b′)ν′(k, b′). (A.33)

Definition A.3 (Strongest Outcome Distribution). An outcome distribution
ν ∈ V is strongest if every outcome distribution ν′ ∈ V, which is stronger than
ν also satisfies ν = ν′.

Let P∗ ⊆ P denote the collection of priors in P with a strongest outcome
distribution.
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A.3.1 Finiteness of SCAMP

Let P be Stationary and Markov. For every player i, type si and information
set I ∈ Ii,P (si), let M(I, si) ∈ N ∪ {∞} denote the number of rounds m so
that I = ImP (si),

M(I, si) ∶= ∣{m ∈ N ∶ I = ImP (si)}∣, (A.34)

where the cardinality of a countable set is set to ∞. Let m(si) ∶= min{m ∈
N ∶ I = ImP (si)} denote the first round where si has information set I.

Define the transitive closure of ⪯, denoted ⪯, as follows: ω⪯ω′ if and only
if there is a list of states ω0, . . . , ωn so that

ω = ω0 ⪯ ⋯ ⪯ ωn = ω′. (A.35)

Note that cycles correspond to the equivalence classes of ⪯.
Say that a process P satisfies sub-obedience if for every m ∈ N and every

player i,
bri(margk,sm−1−i

(P (⋅, ⋅∣si))) ⊆ smi , P a.s. (A.36)

Claim A.6. If P is Stationary after round m∗ and Markov and satisfies obe-
dience for all players’ types on rounds m ≤m∗ then it satisfies sub-obedience
for all n ∈ N.

Proof. For any type si, I ∈ Ii,P (si) and x ∈ N let si(I, x) be the type satisfying

si(I, x)m ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

smi , if m ≤m(si) +M(I, si)
s
m(si)+M(I,si)
i if m ∈ {m(si) +M(I, si), . . . ,m(si) +M(I, si) + x}
sm−xi , otherwise.

Since P is Markov we have that there is an infinite collection N(si, I) ⊆ N of
numbers x so that si(I, x) has positive probability under P .

Suppose M(I, si) > 1. Then there is a cycle c so that I ∩ (K × c) is
non-empty and consists of states which are minimal in I with respect to the
partial pre-order ⪯ (otherwise I would be an information set for at most one
round). Since every state in a cycle has a unique successor in the cycle, to
each such cycle we can associate a cycling probability ηc,k,P ∈ [0,1] under P ,

ηc,k,P ∶=∏
ω∈c

P (c∣k,ω). (A.37)

For any ω′ ∈ c and path ω define m(ω, c) ∶= min{m ∈ N ∶ ωm ∈ c}, where
min{∅} ∶=∞. Moreover, define Hm

P (c, ω′) ∶= {ω ∶m(ω, c) =m, ωm = ω′}.
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Then for any list of distinct successors ω0 ⪯ ⋯ ⪯ ωn−1 ⪯ ωn, where
ω0, . . . , ωn−1 ∈ c and m,m ∈ N where m ≥ m, ω0 ∈ {ω̂ ∶ ∃ k ∈ K, (k, ω̂) ∈
I
m
i,P (si)} and βi(ωn) = smi , . . . , βi(ω0) = sm−ni ,

P ({ω ∶ ωm−1 = ωn−1, ω
m = ωn}∣k, si,Hm

P (c, ω0)) =
η
ℓm,m

c,k,P ∏
n−1
h=1 P (ωh+1∣k,ωh)

∑ω∈Hm
P (c,ω0)∶β(ω)=si P (ω∣k)

=
η
ℓm,m

c,k,P ∏
n−1
h=1 P (ωh+1∣k,ωh)

∑l≤ℓm,m
ηlc,k,P ∏

n−1
h=1 P (ωh+1∣k,ωh)

,

where ℓm,m ∶= m−m−n
∣c∣ is the looping number. Since c is a minimal cycle in I,

we may pick m = m(si) and m = m(si) +M(I, si) + x. Deduce that for any
x,x′ ∈ N(si, I) so that x ≤ x′,

margωm(si)+M(I,si)+xP ({ω′ ∶ ω ⪯ ω′}∣k, si(I, x),H
m(si)
P (c, ω0))

≤margωm(si)+M(I,si)+x′P ({ω′ ∶ ω ⪯ ω′}∣k, si(I, x′),H
m(si)
P (c, ω0)).

(A.38)

Since β is monotone with respect to ⪯, as x increases, beliefs conditional on
k and conditional on paths entering cycle c at ω0 become weakly stronger.
Since P is stationary, P (k,ω1∣si(I, x)) = P (k,ω1∣si(I, x′)) and so

margωm(si)+M(I,si)+x′P (⋅, ⋅∣si(I, x′),H
m(si)
P (c, ω0)) ○ (id × β−i)−1 (A.39)

is weakly stronger than

margωm(si)+M(I,si)+xP (⋅, ⋅∣si(I, x),H
m(si)
P (c, ω0)) ○ (id × β−i)−1. (A.40)

Stationarity implies that P (Hm(si)
P (c, ω0)∣k,ω1, si(I, x)) and P (k,ω1∣si(I, x))

are both independent of x and so beliefs on I conditional on si(I, x) become
stronger as x. Finally, note that m∗ must be large enough so that every
information set is reached by some type before round m∗. Hence the result
follows from the monotonicity of bri established in Claim A.1.

Claim A.7. Let P be a Stationary after round m∗ and Markov. If P satisfies
sub-obedience constraints at all rounds and conditional-obedience for all m ≤
m∗ then it is SCAMP.
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Proof. Fix m ∈ N and si. We will show that obedience holds at round m. By
sub-obedience, we have that

bri(margk,sm−i(P (⋅, ⋅∣si))) ⊆ s
m+1
i , P a.s. (A.41)

By stationarity, we have that for every n ≤m∗, margk,sm−i(P (⋅, ⋅∣si)) is a weaker
distribution than margk,sn−i(P (⋅, ⋅∣ŝi, I

m
i,P (si))). To see this, note the result

holds for terminal information sets. Define

Xk ∶= {(k,ω) ∶ ∃ ω′⪯ωn s.t. (k,ω′) ∈ Imi,P (si)}. (A.42)

Then stationarity implies that P (⋅∣Xk,C∞) = P ∣Xk
○(id×c∞)−1, where P ∣Xk

(ω) ∶=
P (ω∣Xk) and C∞ ∶= ∪ω∶P (ω)>0c∞(ω). Recall that partial pre-order ⪯ has the
property that every automaton state has a unique, strict predecessor. Then
we have that

P (ω∣Imi,P (si)) = ∑
c∶ω⪯c

P (c∣Xk,C∞) (A.43)

But then by conditional obedience,

sm+1i = bri(margk,sm−i(P (⋅, ⋅∣si, I
m
i,P (si)))). (A.44)

But then by the monotonicity property of bri established in Claim A.1 we
conclude that

bri(margk,sm−i(P (⋅, ⋅∣si, I
m
i,P (si)))) ⊆ bri(margk,sm−i(P (⋅, ⋅∣si))). (A.45)

But then we have obedience, i.e. bri(margk,sm−i(P (⋅, ⋅∣si))) = s
m+1
i . But then

P is canonical on all cycles, which thus implies that its distribution on limit
cycles P ○ (id × c∞)−1 induces the outcome distribution on P , i.e.

νP = P ○ (id × β ○ c∞)−1. (A.46)

We thus obtain the finiteness result for SCAMP:

Lemma 5.1 Every Stationary Markov prior P on a Strategic Automaton
that that satisfies obedience constraints and limit-obedience for all n ≤ ∣Ω∣ is
SCAMP.

Proof. Immediate consequence of Claim A.6 and Claim A.7.
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A.3.2 SCAMP Automaton

Definition A.4 (Automaton Representation). For every P ∈ P and Strategic
Automaton (Ω, β,⪯), define an automaton representation of sequences s ∈ SP

as paths via a state map4: τ ∶ s↦ (ω0, ω1, . . . ), where sm = β(ωm) for all m.

For any m ∈ N, let τm(s) ∶= projωm(τ(s)). Let Pτ denote the induced
distribution on K and automaton paths. For a given choice of representation
for each P ∈ P, let Pτ ⊆ ∆(K × ΩN) denote the set of induced automaton
representations. Depending on the automaton, representations need not be
unique.

Definition A.5. Say that a Strategic Automaton (Ω̂, β̂, ⪯̂) is a sub-automaton
of (Ω, β,⪯) if 1) Ω̂ ⊆ Ω, 2) for all ω ∈ Ω̂, β̂(ω) = β(ω) and 3) for all ω,ω′ ∈ Ω̂,
ω⪯̂ω′ ⇐⇒ ω ⪯ ω′.

Fix a prior P ∈ P with a representation τ̂ on a Strategic Automaton
(Ω̂, β̂, ⪯̂). We now construct an extension (Ω, β,⪯) on which P will admit an
outcome equivalent SCAMP.

We now define a new map τ on truncated sequences (s0, . . . , sm).
For any ω′ ∈ Ω̂, let m1

ω′ be the shortest truncation so that ω′ is reached

m1
ω′ ∶=min{m ∈ N ∶ ∃ s ∈ SP s.t. τm(s) = ω′}. (A.47)

Consider the action set transitions at any round m

κm
ω′ ∶= ⋃

s∈SP s.t. τ(s0,...,sm)=ω′
κ(s0, . . . , sm) (A.48)

Define

N(ω′,1) ∶= {n ≥m1
ω′ ∶ κn

ω′ ⊆ κ
m1

ω′
ω′ }

m2
ω′ ∶=min{n ≥m1

ω′ ∶ n ∉ N(ω′,1)}

N(ω′,2) ∶= {n ≥m2
ω′ ∶ κn

ω′ ⊆ κ
m2

ω′
ω′ }

m3
ω′ ∶=min{n ≥m2

ω′ ∶ n ∉ N(ω′,2)}

N(ω′,3) ∶= {n ≥m3
ω′ ∶ κn

ω′ ⊆ κ
m3

ω′
ω′ }

⋮

(A.49)

4An example is, in particular, the map ξz as defined in (A.30), where z satisfies the
cyclicality condition of Corollary A.1.
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Note that the sequence (N(ω′, n),mn
ω′)n converges after a finite number N

of rounds.
We thus define τ as follows

τm(s) ∶= (τ̂m(s), ∑
n≤N

n1N(τ̂m(s),n)(m)) (A.50)

We define Ω ∶= {τm(s) ∶ s ∈ SP ,m ∈ N} and β(τm(s)) = sm. Note that the
additional copies of each ω′ ∈ Ω̂ will form a cycle, where (ω′,1) is the entry
point and for each n ≤ N , the successors of (ω′, n) are given by the successors
of truncated sequences (s0, . . . , smn

ω′).
The key property of this extension is that every sequence reaching a state

ω ∈ Ω will have an information set that is contained in the information set of
the sequence that first reaches ω. Hence, if we average out over all transition
probabilities at state ω to obtain a Markov transition, obedience constraints
of this Markov prior will be a sum over all obedience constraints of P .

We extend the automaton (Ω, β,⪯) constructed above to have the follow-
ing property for expositional convenience:

(iv) there is ω ∈ Ω so that for every path ω,

ω1 = ω ⇐⇒ {c ∶ ∃ m s.t. ωm ∈ c} = {c∞(ω)}. (A.51)

Condition (iv) states that the first transition of a path determines if the
path converges at the first cycle it reaches or not. Any strategic automaton
can easily be extended by duplicating all strategic states below the lowest-
ranked cycle. This allows for an automaton representation of any prior that
separates all paths which converge at their first cycle from all other paths.
We consider a second extension, also for expositional convenience.

For any process P ∈ ∆(K × ΩN), define the induced binary relation
⪯P , where ω ⪯P ω′ if and only if there is m ∈ N and path ω so that
margΩN(P )(ω) > 0, ωm = ω, and ωm+1 = ω′. Recall that C denotes the
collection of cycles of the automaton under ⪯. Let CP denote the collection
of cycles (i.e. equivalence classes) under ⪯P . Let the induced partial order on
those cycles be denoted ⪯CP . Finally, let ⪯P and ⪯CP denote the corresponding
transitive closures.

(v) Every P admits a representation so that there exist z,M ∈ N so that
for all paths ω satisfying margΩN(P )(ω) > 0,

∣{n ∈ N ∶ ωn ∉ ∪c∈CP c}∣ =M
∣c∣ = z, ∀ c ∈ CP .

(A.52)
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Definition A.6 (SCAMP Automaton). Let the SCAMP automaton (Ω, β,⪯)
be the automaton constructed above from the strategic automaton obtained in
Claim A.5, suitably extended to satisfy (iv) and (v).

From now on we will be using only the SCAMP automaton. Let P be
Markov. To each such cycle c we can associate a cycling probability ηc,k ∈
[0,1] under P ,

ηc,k ∶=∏
ω∈c

P (c∣k,ω). (A.53)

For any two ordered cycles c, c′ ∈ CP of P , let XP (c, c′) denote the number
of states, which are not cycles under P , that are ranked between a state in c
and a state in c′,

XP (c, c′) ∶= {ω ∶ ∃ ω′ ∈ c s.t. ω′⪯ω} ∩ {ω ∶ ∃ ω′ ∈ c′ s.t. ω⪯ω′}. (A.54)

Let (cm(s))m≤m(s) denote the cycles as constructed above for any s ∈ SP

where cm(s)(s) is the last cycle visited by s. Define the set of sequences
which transition from c to ĉ,

HP (c, ĉ) ∶= {s ∈ SP ∶
∃ m ≤ n s.t.

{τm(s), . . . , τn(s)} =XP (c, ĉ)
} . (A.55)

Define the average exit probability of P

µP (ĉ∣k, c) ∶=
P (HP (c, ĉ)∣k)

∑c≺c̃P (HP (c, c̃)∣k)
. (A.56)

Note that a cycling probability η = (ηk,c)k,c ∈ [0,1]K×CP , an exit proba-
bility µ∶K × C → ∆(C) with µ(c∣k, c′) > 0 Ô⇒ c′ ⪯CP c, and a marginal
probability on K together induce a Markov prior Pµ,η: For every k ∈ K and
s ∈ SP ,

Pµ,η(s∣k) ∶= ∏
m<m(s)

(ηk,cm(s))ℓm(s)(1 − ηk,cm(s))µ(cm+1(s)∣k, cm(s)), (A.57)

where ℓm is the looping number, i.e.

ℓm(s) ∶=
1

z
∣ {n ∈ N ∶ ∀ l < z, τn+l(s) ∈ cm(s)} ∣, (A.58)

and z ∈ N is the size of a cycle.
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Definition A.7 (Simple Cycling Probability). A cycling probability η =
(ηk,c)k,c ∈ [0,1]K×C is simple if for all k ∈K and cycles c, ĉ ∈ C,

ηk,c, ηk,ĉ > 0 Ô⇒ ηk,c = ηk,ĉ.
Simple Cycling probabilities imply Stationary Markov priors:

Claim A.8. For any simple cycling probability, η the induced Markov prior
PµP ,η is stationary.

Proof. Consider a type s that visits cycles c1, . . . cnm(s), where c1 ⪯CP ⋯ ⪯CP
cnm(s)−1 ⪯CP c∞(τ(s)) = cnm(s) and m is the first round where τm(s) ∈ cnm(s).
By property (v) of the automaton representation, if s loops for a total of ℓm
times before round m, then all sequences ŝ which reach a terminal node at
round m for the first time must also loop through ℓm cycles before round m.
Define

S
m ∶= {s ∈ SPµP ,η

∶m =min{n ∶ τn(s) ∈ c∞ ○ τ(s)}}, (A.59)

By property (iv), if nm(s) > 1, then conditional on τ 1(s) = ω1 and conditional
the event S

m
, we can write5 for any simple transition probability η:

Pµ,η(s0, . . . , sm∣k,ω1, S
m) =

∏1<h≤nm(s) η
ℓm
k,ch−1µ(ch∣k, ch−1)

∑ŝ∈Sm∶τ1(ŝ)=ω1∏1<h≤nm(ŝ) η
ℓm
k,ch−1µ(ch∣k, ch−1)

=
∏1<h≤nm(s) µ(ch∣k, ch−1)

∑ŝ∈Sm∶τ1(ŝ)=ω1∏1<h≤nm(ŝ) µ(ch∣k, ch−1)
.

Let m be the first round so that for every c ∈ C∞,P , there exists s ∈ SP

so that τm(s) ∈ c∞(τ(s)). From the definition of µ (see expression (A.56))
and the fact that every path of a representation eventually reaches a cycle in
C∞,P we then obtain that

∑
ŝ∈Sm∶τ1(ŝ)=ω1

∏
1<h≤nm(ŝ)

µ(ch∣k, ch−1) = ∑
s∈SPµ,η

∶∃ n s.t. τn(s)∈c∞(τ(s))
P (s∣k,ω1)

= 1.
Hence for every k ∈K, every cycle c ∈ C∞,P ,

Pµ,η(τm(s) ∈ c∣k,ω1)
∑ŝ∈Sm∶τ1(ŝ)=ω1 Pµ,η(ŝ∣k,ω1)

= ∏
1<h≤nm(s)

µ(ch∣k, ch−1)

= ∑
ω∈c−1∞ (c)

Pµ,η(ω∣k,ω1)

5Note that we don’t need to condition µ(ch∣k, ch−1) on ω1 since every automaton state
has a unique predecessor that is not in the same cycle.
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It remains to show that for every s, ŝ ∈ SPµ,η
and player i,

Ii,P (si) = Ii,P (ŝi) Ô⇒ P (k,ω1∣si) = P (k,ω1∣ŝi), P a.s. (A.60)

It will be enough to show that P (k,ω1∣si) does not depend on the cycling
probability. Let ch(τ(s)) be the h-th cycle passed by τ(s). We consider two
cases:

(i) Suppose PµP ,η({(k, ŝ) ∶ k ∈ K,c1(τ(ŝ)) = c∞(τ(ŝ))}∣si) = 0. Then
by properties (iv) and (v) and the fact that the cycling probabil-
ity is simple, the argument above implies that i’s beliefs on (k,ω1)
conditional on si do not depend on the cycling probability. Hence
P (k,ω1∣si) = P (k,ω1∣ŝi).

(ii) Consider now the case where PµP ,η({(k, ŝ) ∶ k ∈K,c1(τ(ŝ)) = c∞(τ(ŝ))}∣si) >
0. Then it must be that for every h, βi(ch(τ(ŝ))) = smi for all m ≥
m(si) ∶= min{n ∈ N ∶ ∃s̃ s.t. P (s̃∣si) > 0, τn(s̃) ∈ c1(τ(s̃)) = c∞(τ(s̃))}.
Butm(si) =m(ŝi) and we must have that si = ŝi. So again, P (k,ω1∣si) =
P (k,ω1∣ŝi).

A.3.3 Sufficiency of SCAMP

Claim A.9. Let P ∈ P and let µP be given by (A.56). Then there exists
a simple cycling probability η so that the induced Markov prior Pµ,η is an
outcome equivalent SCAMP.

Proof. We will first show that we can find a simple cycling probability so that
sub-obedience holds everywhere. We then argue that conditional obedience
also holds. Claim A.8 implies µP induces a Stationary Markov process. But
then by Claim A.7 we deduce that P is SCAMP.

We start by showing sub-obedience. For any ω and k, define

G
ai,a

′
i

i (k,ω) ∶= min
σk∈β−i(ω)

(ui(k, ai, σk) − ui(k, a′i, σk)),

G
ai,a

′
i

i (k,ω) ∶= max
σk∈β−i(ω)

(ui(k, ai, σk) − ui(k, a′i, σk)).
(A.61)

For ω⪯ω′ we have that βj(ω′) ⊆ βj(ω) for any player j. Hence for every
player i, k ∈K and ai, a′i ∈ Ai,

G
ai,a

′
i

i (k,ω) ≤ Gai,a
′
i

i (k,ω′),

G
ai,a

′
i

i (k,ω) ≥ Gai,a
′
i

i (k,ω′).
(A.62)
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Let P ∶= PµP ,η denote the Markov prior with a simple cycling probability η =
(ηk,c)k,c. We now show that P is canonical for any simple cycling probability
that preserves the support of limit cycles, {(k, c) ∶ P ○ (id× c∞)−1(k, c) > 0} =
{(k, c) ∶ P ○ (id × c∞)−1(k, c) > 0}. Let s ∈ SP and fix any round m ∈ N.
We can write obedience constraints at information set Im

i,P
(si) for ai ∈ sm+1i ,

a′i ∈ smi ∖ sm+1i

0 < ∑
(k,ω)∈Im

i,P
(si)

ηℓ(ω) ∏
1<h≤n(ω)

µP (cω,h, ∣k, cω,h−1)P (ω1∣k)PK(k)G
ai,a

′
i

i (k,ω),

(A.63)
moreover, for every ai ∈ smi and every a′i ∈ Ai,

0 ≤ ∑
(k,ω)∈Im

i,P
(si)

ηℓ(ω) ∏
1<h≤n(ω)

µP (cω,h, ∣k, cω,h−1)P (ω1∣k)PK(k)G
ai,a

′
i

i (k,ω),

(A.64)
where a path reaching ω must pass through cycles cω,1, . . . , cω,n(ω) and the
looping number ℓ(ω) is defined as the number of loops required to reach ω
at round m. Note that if ω⪯ω̂,

ℓ(ω) ≥ ℓ(ω̂). (A.65)

Indeed, if a state is ranked lower at the round m, it must be that it cycled
weakly more often.

For any information set under P , Ii ∈ Ii,P (si) and cycle c, define

HP (c∣Ii) ∶= {s ∈ ∪ĉHP (c, ĉ) ∶ ∃ n ∈ N s.t. Ini,P (si) = Ii}
HP (Ii) ∶= {s ∈ SP ∶ ∃ n ∈ N s.t. Ini,P (si) = Ii}

(A.66)

Let τm(s) = ω. Then by construction of the SCAMP automaton (see Defini-
tion A.6), we have that for all ŝ ∈ SP so that τn(ŝ) = ω for some n ∈ N,

Ini,P (ŝi) ⊆ Imi,P (si). (A.67)

Summing the right hand side of the sub-obedience constraints (A.63) of player
i under P at information set Ii over all sequences in HP (Ii),

∑
(k,ω)∈Ii

ρ(ω, Ii, k)α
ai,a

′
i

k,ω , (A.68)
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where α
ai,a

′
i

k,ω ∶= PK(k)G
ai,a

′
i

i (k,ω) and

ρ(ω, Ii, k) ∶= ∏
1<h≤n(ω)

P (HP (cω,h∣Ii) ∣ k,HP (cω,h−1∣Ii)). (A.69)

Substituting the definition of µP into the right hand side of (A.63),

0 < ∑
Ii⊆Im

i,P
(si)

∑
(k,ω)∈Ii

ηℓ(ω)ρ(ω, Ii, k)P (HP (Ii)∣k)α
ai,a

′
i

k,ω .
(A.70)

Hence the inequality (A.63) holds for any interior choice of η. The same
argument implies that inequality (A.64) holds for η = 1. We now show that
this means conditional obedience holds. Conditional obedience takes the
form: For ai ∈ sm+1i , a′i ∈ smi ∖ sm+1i

0 < ∑
(k,ω)∈Im

i,P
(si)

∏
1<h≤n(ω)

µP (cω,h, ∣k, cω,h−1)P (ω1∣k)PK(k)G
ai,a

′
i

i (k,ω), (A.71)

moreover, for every ai ∈ smi and every a′i ∈ Ai,

0 ≤ ∑
(k,ω)∈Im

i,P
(si)

∏
1<h≤n(ω)

µP (cω,h, ∣k, cω,h−1)P (ω1∣k)PK(k)G
ai,a

′
i

i (k,ω). (A.72)

Indeed, by conditioning on reaching maximal states, implies that all se-
quences must cycle for the same number of times on the SCAMP automaton
(by properties (iv) and (v) of the SCAMP Automaton). We proceed by
backwards induction:

(i) First suppose that smi = sm+li for all l > 0 (i.e. si converges before or
at round m). Then there is a terminal information set I∗i so that the
beliefs of si are weakly stronger and η = 1 because the cycle is terminal.
But then conditional obedience also holds since Im

i,P
(si) contains weakly

lower ranked states than I∗i but weakly higher ranked than Im
i,P
(si).

Since we established sub-obedience on Im
i,P
(si), we have (A.71) and

since we have obedience on I∗i , we must also have (A.72).

(ii) Given our argument in (i) we now proceed by backwards induction:

Suppose that for every (k,ω) ∈ Im
i,P
(si), every successor ω′ satisfying

both ω⪯ω′ and ω′ ∉ Im
i,P
(si), we have shown obedience (i.e. conditions
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(A.63) and (A.64) at every information set I ′i that contains ω′. We

conclude that conditional obedience holds: Im
i,P
(si) contains weakly

lower ranked states than I ′i but weakly higher ranked than Im
i,P
(si).

Since we established sub-obedience on Im
i,P
(si), we have (A.71) and

since we have obedience on I ′i per inductive hypothesis, we must also
have (A.72).

By Claim A.8, for any choice simple cycling probability we have that P is
a Stationary Markov process. We have shown that it satisfies sub-obedience
and conditional obedience. But then by Claim A.7 we deduce that P is
SCAMP.

Theorem 5.1 For every finite game there exists a strategic automaton
so that the set of SCAMP induce all outcome distributions.

Proof. An immediate consequence of Claim A.9 and the definition of the
SCAMP automaton.

A.4 Linear Characterization of Rationalizable Outcomes

Define the Generating Set X as the set of paths on the automaton of length
m∗ = ∣Ω∣,

X ∶= {(k,ω0, . . . , ωm∗) ∶ ω0 ⪯ ⋯ ⪯ ωm∗} . (A.73)

For any p ∈ ∆(X), let its support be Xp. For every player i, define the
equivalence classes Xi,p,

Xi,p ∶= {{(k, e) ∈Xp ∶ βi(e0) = βi(ê0), . . . , βi(em
∗) = βi(êm

∗)} ∶ (k̂, ê) ∈Xp} .
(A.74)

A distribution p ∈ ∆(X) satisfies obedience if for every (k, e) ∈ Xp, every i,
every m, Xi,p ∈ Xi,p so that (k, e) ∈Xi,p and m ≤m∗p,

bri(p∣Xi,p
○ (id × β−i ○ projm−1)−1) = βi(em), (A.75)

where p∣Xi,p
(k, e′) ∶= p(k, e′)/p(Xi,p), for all k ∈K and e′ ∈Xi,p. The collection

of distributions p ∈∆(Xp) satisfying expression (A.75) for every player i: For
every i, Xi,P ∈ Xi,p, e ∈Xi,p, m ≤m∗ and every a′i ∈ βi(em−1) ∖ βi(em) there is
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ai ∈ βi(em) so that

0 < ∑
(k,e)∈Xi,p

p(k, em−1) min
σk∈∆(β−i(em−1))

∑
a−i

σk(a−i)(ui(k, ai, a−i) − ui(k, a′i, a−i))

= ∑
(k,e)∈Xi,p

p(k, em−1) min
σk∈β−i(em−1)

(ui(k, ai, σk) − ui(k, a′i, σk)),

moreover, for every ai ∈ βi(em) and every a′i ∈ Ai

0 ≤ ∑
(k,e)∈Xi,p

p(k, em−1) max
σk∈∆(β−i(em−1))

∑
a−i

σk(a−i)(ui(k, ai, a−i) − ui(k, a′i, a−i))

= ∑
(k,e)∈Xi,p

p(k, em−1) max
σk∈β−i(em−1)

(ui(k, ai, σk) − ui(k, a′i, σk))

Let Om∗ ⊆ ∆(K × Ωm∗) denote the set of distributions on K × Ωm∗ that
satisfy obedience constraints. Let the set of terminal states of p ∈∆(K×Ωm∗)
be given by

X(p) = {(k,ωm∗) ∈K ×Ω ∶ p(k, (ω0, . . . , ωm∗)) > 0}, (A.76)

Letting pm
∗(k,ω) = ∑x∈Ωm∗ ∶xm∗=ω p(k, x), define the limit probability of p

p(k, b) =
∑ω∶β(ω)=b p

m∗(k,ω)
pm∗(X(p))

. (A.77)

The limit probability p satisfies limit-obedience if for every b in its support
and every player i, bi = bri(p(⋅, ⋅∣bi)). Let O∞ ⊆ ∆(K ×B) denote the set of
probabilities satisfying limit-obedience.

LetO ⊆ O∞ denote the set of limit probabilities p satisfying limit-obedience
which are obtained from distributions in p ∈ Om∗ ,

O = {p ∶ p ∈ Om∗} ∩O∞. (A.78)

The relative closure of this set is a convex polyhedron:

Lemma 5.2. The relative closure of the set O is a convex polyhedron.

Proof. Clearly, the relative closure of Om∗ and that of O∞ are convex poly-
hedra. Consider the un-scaled limit measure p∗,

p∗(k, b) = ∑
ω∶β(ω)=b

p∗(k,ω)
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Then we have that the relative closure of {p∗ ∶ p ∈ Om∗} is a convex polyhe-
dron. Finally, note that the collection {pm∗(X(p)) ∶ p ∈ Om∗} ⊆ [0,1] is an
interval [x,x]. Let X denote the set of states of nature K and sequences in
Ωm∗ that reach a terminal state. The we have that

{p ∶ p ∈ Om∗} = {1
x
p∗ ∶ p ∈ Om∗ , x ∈ [x,x]} ∩∆(X). (A.79)

Indeed, each p∗ has a unique x ∈ [x, , x] so that 1
xp
∗ ∈∆(X), we obtain O as

the intersection of a cone and a simplex, making it a convex polyhedron.

We now show that O coincides with the set of all outcome distributions.
For any (k, e) = (k, (ω0, . . . , ωm∗)) ∈ X, let the ordered list of cycles visited
by e be denoted by

c1(e), . . . , cm(e)(e). (A.80)

For every distribution p ∈ ∆(X), we can obtain an average exit probability
of p

µp(c, ĉ∣k) ∶= p(Hm∗
p (c, ĉ)∣k), (A.81)

where

Hm∗
p (c, ĉ) ∶= {(s0, . . . , sm

∗) ∶ ∃ m ≤ n ≤m∗ s.t.
{τm(s), . . . , τn(s)} =XP (c, ĉ)

} . (A.82)

For any choice of simple cycling probability η, the triple (µp, η,margK(p))
induces a distribution on X, denoted pP , where for every k ∈ K, (k, e) =
(k, (ω0, . . . , ωm∗P )) ∈XP

pµp,η(e∣k) ∶= ∏
m<m(e)

(ηk,cm(e))ℓm(e)(1 − ηk,cm(e))µ(cm+1(e)∣k, cm(e)), (A.83)

where (with slight abuse of notation) the looping number ℓm(e) is defined
analogously to (A.58)

ℓm(e) ∶=
1

z
∣ {n ≤m∗ ∶ ∀ l < z, en+l ∈ cm(e)} ∣. (A.84)

Corollary A.2. If p ∈∆(X) satisfied obedience then there is simple cycling
probability η so that the Markov prior induced by (µp, η,margK(p)) is SCAMP
whose outcome distribution is equal to p.
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Proof. This follow readily from the construction and the arguments in Claim
A.9 applied to

We thus obtain our characterization of strongest rationalizable outcomes:
Theorem 5.2

(i) Every SCAMP P induces a distribution pP ∈ O through its marginal
on K ×Ωm∗ so that the limit probability pP coincides with the outcome
distribution of P .

(ii) For every p ∈ O there exists SCAMP Pp so that the limit probability p
coincides with the outcome distribution of Pp.

Proof. (i) Follows from the definition of SCAMP. (ii) Is an immediate con-
sequence of Claim A.2.
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