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Abstract This papers studies an optimization problem under entropy constraints
arising from repeated games with signals. We provide general properties of solutions
and a full characterization of optimal solutions for 2 × 2 sets of actions. As an appli-
cation we compute the min max values of some repeated games with signals.
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1 Introduction

A probability distribution D on a product set A = ∏
i∈N Ai can be represented as

a convex combination of independent distributions D = ∑K
k=1 αkdk in a variety of

O. Gossner
Paris-Jourdan Sciences Economiques,
UMR CNRS-EHESS-ENS-ENPC 8545, Paris, France
e-mail: gossner@pse.ens.fr

O. Gossner
MEDS, Northwestern University, Evanston 60208, IL, U.S.A.

R. Laraki
Laboratoire d’Econométrie de l’Ecole Polytechnique,
CNRS, Paris, France
e-mail: laraki@poly.polytechnique.fr

T. Tomala (B)
CEREMADE, Université Paris Dauphine, Paris, France
e-mail: tomala@ceremade.dauphine.fr

123



O. Gossner et al.

ways. This paper looks into the problem of finding the decomposition
{
(α∗

k , d∗
k )

}K
k=1

of a distribution D with maximal expected entropy:

{
(α∗

k , d∗
k )

}K
k=1 ∈ arg max∑K

k=1 αk dk=D

K∑

k=1

αk H(dk),

where the dk’s are independent probability distribution on A and H is the entropy
function.

The motivation of this work stems from the computation of individually rational
levels in repeated games with imperfect monitoring, which itself comes from the
computation of Nash equilibrium payoffs in such repeated games. The celebrated
Folk theorem due to Aumann and Shapley [1] asserts that in repeated games with
long horizon and perfect monitoring of actions (when each player gets to observe at
each stage the actions chosen by all players during the previous stage), Nash equi-
librium payoffs coincide with feasible and individually rational payoffs vectors. A
vector payoff is called feasible if it can be induced by some strategy profile. It is
individually rational when for every player, it is superior to his min max payoff, defi-
ned as the minimum to which other players can force this player down. The main
rationale behind this result is that players agree on a rule to select the sequence
of action profiles and, whenever players others than i see player i “cheating” from
the prescribed rule, they “punish” player i by using min max strategies against him
in the repeated game. These punishment threats are sufficient to deter any player
from cheating when the payoff implemented by the prescribed rule is individually
rational.

A central open problem in the theory of repeated games is the extension of the “Folk
Theorem” to repeated games with imperfect monitoring, in which each player gets to
observe at each stage a (partially informative) signal on the actions chosen during the
previous stage. Since, under imperfect monitoring as well as under perfect monitoring,
equilibrium payoffs are feasible and individually rational, the computation of min max
payoffs is an essential step towards a characterization of equilibrium payoffs.

In repeated games with perfect monitoring, the min max level for player i is the
min max of the stage game given by the formula mins−i maxai gi (s−i , ai ), where s−i

is a profile of (independent) mixed strategies of other players than i , ai is player i’s
action, and gi is i’s stage payoff function.

In repeated games with imperfect monitoring, information asymmetries about past
play may create possibilities of correlation for a group of players.

For instance, if all players except i have perfect monitoring and if player i
observes no signals, player i’s opponents can exchange messages that are secret for
player i and punish him to the min max level in correlated mixed strategies, given
by mind−i maxai gi (s−i , ai ), where d−i is any (possibly correlated) distribution of
actions of other players but i .

In general games with imperfect monitoring, the min max level for a player lies
between the correlated min max and the min max in mied strategies of the one-shot
game.

The characterization of min max payoffs of general repeated games with imper-
fect monitoring is an open problem. This paper solves the question for some classes
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signalling structures. It develops some tools and shows potential directions of inves-
tigation for more general signalling structures.

Our method relies on Gossner and Tomala [5] who study the difference of forecasting
abilities between a perfect observer of a stochastic process and an observer who gets
imperfect signals on the same process. Building on this result, Gossner and Tomala [6]
consider repeated games where player i gets a signal on his opponents’ action profile
which does not depend on his own action. At a given stage of the game, i holds a belief
on the mixed action profile used by players against him, represented by a probability
distribution on the set of uncorrelated mixed action profiles. Such a distribution, Z , is
called a correlation system.

To each correlation system corresponds an entropy variation, ∆H(Z), defined as
the difference between the expected entropy of the mixed action profile of players
against i and the entropy of the signal observed by i . Gossner and Tomala [6] prove
that the max min of the repeated game (where player i is minimizing) is the highest
payoff obtained by using two correlation systems Z and Z ′ with respective time fre-
quencies λ, 1−λ under the constraint that the average entropy variation is non-negative
(i.e. λ∆H(Z)+ (1−λ)∆H(Z ′) ≥ 0). To achieve this payoff, the opponents of i start
by generating signals that give little information to player i (they accumulate entropy).
Then they play alternatively a correlation system that yields a bad payoff but gene-
rates entropy (has a positive entropy variation) and another that uses the entropy just
generated to yield a good payoff. The constraint on the frequencies of the correlation
system is that on average, the entropy variation must be greater than or equal to zero.

The aim of the present paper is to develop tools for computing optimal solutions
of this problem when the team against player i consists of two players. Fixing a
correlated distribution of actions, we select, among the correlation systems that induce
it, the one with maximal expected entropy. We derive general properties of the solu-
tions and a full characterization of these solutions when each of the team player’s
action spaces has two elements. Relying on these solutions, we deduce a full analytic
characterization of the max min of an example of repeated game with imperfect moni-
toring. Another application of our characterization of optimal correlation systems has
been developed by Goldberg [4]. Beyond the game studied in this paper, the tools we
develop may serve as a basis for computations of solutions of maximization problems
under entropy constraints raising from other optimization or game theoretic problems.

This paper is part of a growing body of literature on entropy methods in repeated
games. Lehrer and Smorodinsky [9] relate the relative entropy of a probability measure
P with respect to a belief Q and the merging of P to Q. Neyman and Okada [11,12]
use entropy as a measure of the randomness of a mixed strategy, and apply it to
repeated games played by players with bounded rationality. Gossner and Vieille [7]
compute the max min value of a zero-sum repeated game where the maximizing player
is not allowed to randomize freely but privately observes an exogenous i.i.d. process,
and show that this value depends on the exogenous process through its entropy only.
Gossner et al. [3] apply entropy methods to the study of optimal use of communication
resources.

We present the notion of informationally optimal correlation system and our main
results in Sect. 2. Section 3 presents the application to repeated game problems. The
main proofs are in Sect. 4.
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2 Informationally optimal correlation

2.1 Model and definitions

Let N = {1, . . . , n} be a finite team of players and Ai be a finite set of actions for player
i ∈ N . A mixed strategy for player i is a probability distribution xi on Ai and we let
Xi = ∆(Ai ) be the set of probability distributions on Ai . We let A = ∏

i∈N Ai be the
set of action profiles and X N = ∆(A)be the set of (correlated) probability distributions
on A. We also let X = ⊗i∈N Xi the set of independent probability distributions on A,
i.e. a distribution D is in X if there exist x1 ∈ X1, . . . , xn ∈ Xn such that for each a,
D(a) = ∏

i x i (ai ), we write then D = ⊗i xi ∈ ∆(A).
We describe how correlation of actions is obtained. A finite random variable k with

law p = (pk)k is drawn and announced to each player in the team and to no one else.
Then each player chooses an action, possibly at random. We think of k as a common
information shared by the team’s members which is secret for an external observer.
For example, k can be the result of secret communication within the team, or it can
be provided by a correlation device (Aumann, [2]). Conditioning the mixed strategies
on the value of k, the team can generate every distribution of actions of the form

D =
∑

k

pk ⊗i x i
k

for each k, xi
k ∈ Xi . The distribution D can thus be seen as the belief of the external

observer on the action profile played by the team. Note that the random variable k
intervenes in the decomposition through its law only and in fact only through the
distribution it induces on mixed strategies. We define thus a correlation system as
follows

Definition 1 A correlation system Z is a distribution with finite support on X :

Z =
K∑

k=1

pkε⊗i xi
k

where for each k, pk ≥ 0,
∑

k pk = 1, for each i , xi
k ∈ Xi , and ε⊗i xi

k
stands for the

Dirac measure on ⊗i x i
k .

The distribution of actions induced by Z is D(Z) = ∑
k pk ⊗i x i

k , element of X N .

We measure the randomness of correlation systems using the information theoretic
notion of entropy.

Let x be a finite random variable with law p, the entropy of x is:
H(x) = E[− log p(x)] = −∑

x p(x) log p(x), where 0 log 0 = 0 and the logarithm
is in basis 2. H(x) is non-negative and depends only on p, we shall thus also denote it
H(p). Let (x, y) be a pair of finite random variables with joint law p. For each x, y,
define the conditional entropy of x given y by: H(x|y) = −∑

x,y p(x, y) log p(x |y).
Entropy verifies the following chain rule: H(x, y) = H(y)+ H(x|y). In the case of a
binary distribution (p, 1 − p) we let,
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h(p) := H(p, 1 − p) = −p log p − (1 − p) log(1 − p)

The uncertainty of an observer regarding the action profile of the team is the result
of two effects: (1) team players condition their actions on the random variable k, (2)
conditional on the value of k team players use mixed actions xi

k . We measure the
uncertainty generated by the team itself by the expected entropy of ⊗i x i

k .

Definition 2 Let Z be a correlation system, Z = ∑K
k=1 pkε⊗i xi

k
. The expected entropy

of Z is

J (Z) =
∑

k

pk H(⊗i x i
k)

Example 1 Consider a two-player team, with two actions for each player: A1 = A2 =
{G, H}. We identify a mixed strategy for player i with the probability it puts on G. A

distribution D ∈ X12 is denoted D =
(

d1 d2
d3 d4

)

, where d1 denotes the probability of

the team’s action profile (G,G), d2 the probability of (G, H), etc. The distribution D =( 1
2 0
0 1

2

)

can be uniquely decomposed as a convex combination of independent

distributions as follows: D = 1
2 (1 ⊗ 1)+ 1

2 (0 ⊗ 0). A correlation system Z such that
D(Z) = D is thus uniquely defined: Z = 1

2ε1⊗1 + 1
2ε0⊗0, i.e. the players flip a fair

coin an play (G,G) if heads and (H, H) if tails. Then given k = k, the strategies used
are pure, thus J (Z) = ∑

k pk H(⊗i x i
k) = 0.

By contrast the distribution D′ =
( 1

3
1
3

0 1
3

)

can be obtained by several correla-

tion system. For example, D′ = D(Z) for the following Z ′s:

– Z1 = 1
3ε1⊗1 + 1

3ε1⊗0 + 1
3ε0⊗0.

– Z2 = 2
3ε1⊗ 1

2
+ 1

3ε0⊗0.

– Z3 = 1
2ε1⊗ 2

3
+ 1

2ε 1
3 ⊗0

Under Z1, the players play pure strategies conditional on the value of k, thus J (Z1) =
0. Under Z2, J (Z2) = ∑

k pk H(⊗i x i
k)= 2

3 H( 1
2 ,

1
2 )= 2

3 . Under Z3,
∑

k pk H(⊗i x i
k)=

H( 1
3 ,

2
3 ). One gets then J (Z3) > J (Z2) > J (Z1). The question is how to generate

D′ with maximal expected entropy? It turns out that Z3 is optimal for D′ in this sense.
This leads to the following definition.

Definition 3 Given D ∈ X N , a correlation system Z is informationally optimal for
D if:

1. D(Z) = D;
2. For every Z ′ such that D(Z ′) = D, J (Z ′) ≤ J (Z).

In other words, Z is a solution of the optimization problem:

max
Z :D(Z)=D

J (Z) (PD)
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A correlation system Z is informationally optimal if it is informationally optimal
for D(Z).

2.2 Properties

Now we prove the existence of optimal correlation systems for every distribution D.

Proposition 1 For every D ∈ X N , there exists Z optimal for D which has finite
support of cardinal no more than

∏
i

∣
∣Ai

∣
∣ + 1.

Proof Let D ∈ X N , identifying an action ai of player i with the mixed strategy
εai ∈ Xi , one has

D =
∑

a

D(a)⊗i ai

Thus the set of Z such that D(Z) = D is non-empty. Now for each Z = ∑K
k=1 pkε⊗i xi

k
such that D(Z) = D, the vector (D(Z), J (Z)) writes

(D(Z), J (Z)) =
K∑

k=1

pk

(
⊗i x i

k, H(⊗i x i
k)

)

and thus belongs to the convex hull of the set

S =
{
(⊗i x i , H(⊗i x i )) | ⊗i x i ∈ X

}

S is a subset of∆(A)×R which has dimension (
∏

i

∣
∣Ai

∣
∣−1)+1. From Carathéodory’s

theorem, (D(Z), J (Z)) can be obtained by a convex combination of at most K =∏
i

∣
∣Ai

∣
∣ + 1 points in S. Summing up, for each distribution D and correlation system

Z s.t. D(Z) = D, there exists Z ′ with
∣
∣supp Z ′∣∣ ≤ K , D(Z ′) = D and J (Z ′) = J (Z).

It is plain that the set of correlation systems Z ′ s.t.
∣
∣supp Z ′∣∣ ≤ K and D(Z ′) = D is

a nonempty finite dimensional compact set and that the mapping J is continuous on
it. The maximum of J is thus attained on this set. ��

Solutions to the problem (PD): maxZ :D(Z)=D J (Z) thus exist. We establish some
properties on the value of (PD).

Proposition 2 1. The mapping ϕ : D 	→ value of PD is the smallest concave func-
tion on X N such that its restriction to X, ϕ|X is pointwise (weakly) greater than
the entropy function, i.e.ϕ(⊗i x i ) ≥ H(⊗i x i ) for each ⊗i x i ∈ X.

2. ϕ is continuous on X N .
3. For each D, ϕ(D) ≤ H(D). Furthermore, ϕ(D) = H(D) iff D is a product

distribution.
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Proof (1) Let f be the bounded mapping f : X N → R, such that

f (D) =
{

H(D) if D ∈ X
0 if D /∈ X

Then ϕ = cav f the smallest concave function on X N that is pointwise (weakly)
greater than f .

(2) Since f is uppersemicontinuous and X N is a polytope, we deduce from Laraki
[8] (theorem 1.16, proposition 2.1 and proposition 5.2) that ϕ is uppersemiconti-
nuous. Also, since X N is a polytope and ϕ is bounded and concave, we deduce from
Rockafellar [13] (theorem 10.2 and theorem 20.5) that ϕ is lowersemicontinuous.

(3) If D = ∑
k pk ⊗i x i

k , by concavity of the entropy function, H(D) ≥ ∑
k pk

H(⊗i x i
k), thus H(D) ≥ ϕ(D). Assume D ∈ X , i.e. D = ⊗i x i , by point (1)ϕ(⊗i x i ) ≥

H(⊗i x i ) so that ϕ(⊗i x i ) = H(⊗i x i ). If D /∈ X , from proposition 1 there exists
Z = ∑K

k=1 pkε⊗i xi
k

s.t. D = ∑
k pk ⊗i x i

k and ϕ(D) = ∑
k pk H(⊗i x i

k) and by strict
concavity of the entropy function, ϕ(D) < H(D). ��

The set of optimal correlation systems possesses a kind of consistency property.
Roughly, one cannot find in the support of an optimal system, a sub-system which is
not optimal. In geometric terms, if we denote by Z the set of all correlation systems and
F(Z) the minimal geometric face of the convex Z containing Z , then the following
lemma states that if Z is optimal then any correlation system that belongs to F(Z) is
also optimal (for a precise definition of the geometric face in infinite dimension, see
e.g. [8]).

Lemma 1 If Z is informationally optimal and supp Z ′ ⊆ supp Z then Z ′ is also
informationally optimal.

In particular, if Z = ∑K
k=1 pkε⊗i xi

k
is informationally optimal, then for any k1

and k2 in {1, . . . , K } such that pk1 + pk2 > 0,
pk1

pk1+pk2
ε⊗i xi

k1
+ pk2

pk1+pk2
ε⊗i xi

k2
is

informationally optimal.

Proof The set of Z ′ such that supp Z ′ ⊆ supp Z is the minimal face containing Z of the
set of correlations systems. Therefore, Z lies in the relative interior of this face (from the
previous lemma, we can bound uniformly the support and assume all Z ’s to be in some
finite dimensional space). So for each Z ′ s.t. supp Z ′ ⊆ supp Z , there exist 0 < λ ≤ 1
and Z ′′ such that Z = λZ ′ + (1 − λ)Z ′′. Assuming that Z ′ is not informationally
optimal, there exists Z∗ s.t. D(Z∗) = D(Z ′) and J (Z∗) > J (Z ′). Define Z0 =
λZ∗ + (1 − λ)Z ′′, then D(Z0) = D(Z) and J (Z0) − J (Z) = λ(J (Z∗) − J (Z ′))
contradicting the optimality of Z . ��

2.3 Characterization in the 2 × 2 case

We characterize informationally optimal correlation systems for two player teams
where each team player possesses two actions. We assume from now on that A1 =
A2 = {G, H}. We identify a mixed strategy x (resp. y) of player 1 (resp. 2) with the
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probability of playing G, i.e. to a number in the interval [0, 1]. We denote distributions
D ∈ X12 by

D =
(

d1 d2
d3 d4

)

,

where d1 denotes the probability of the team’s action profile (G,G), d2 the probability
of (G, H), etc.

The following theorem shows that the informationally optimal correlation system
associated to any D is unique, contains at most two elements in its support, can be
easily computed for a given distribution, and that the set of informationally optimal
correlation systems admits a simple parametrization.

Theorem 1 For every D ∈ X12, there exists a unique Z D which is informationally
optimal for D. Moreover,

– If det(D) = 0, Z D = εx⊗y where:

x = d1 + d2, y = d1 + d3

– If det(D) < 0, Z D = pεx⊗y + (1 − p)εy⊗x where x and y are the two solutions
of the second degree polynomial equation

X2 − (2d1 + d2 + d3)X + d1 = 0

and

p = y − (d1 + d2)

y − x
.

– If det(D) > 0, Z D = pε(1−x)⊗y + (1 − p)ε(1−y)⊗x where x and y are the two
solutions of the second degree polynomial equation

X2 − (2d3 + d4 + d1)X + d3 = 0

and

p = y − (d3 + d4)

y − x

The proof is quite involved and is provided in Sect. 4.1. Remark that each cor-
relation system involves two points only in its support and that the parametrization
of informationally optimal correlation systems involves three parameters, matching
the dimension of X12. Note that proposition 1 only proves the existence of optimal
correlation systems with

∣
∣A1

∣
∣ · ∣

∣A2
∣
∣ + 1 = 5 points in their support, thus described

by 12 parameters.
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3 Applications to repeated games with imperfect monitoring

A central problem in repeated games with imperfect monitoring is the generalization
of the Folk theorem. This classical result asserts that if players perfectly observe the
action profile and have high discount factors, then every feasible and individually
rational payoff can be sustained by an equilibrium of the repeated game. An important
issue is thus to find the individually rational level, i.e. the min max level of a player in
a repeated game with imperfect monitoring. If all players but i want to punish player
i , then they form a team of players who wish to correlate their actions in a way that is
secret to player i . The connection to our concept is thus clear. The aim of this section
is to show how to characterize the min max level through informationally optimal
correlation and to use this characterization to solve examples.

3.1 The individually rational level in repeated games with imperfect monitoring

Let N = {1, . . . , n} be a team of players and n + 1 be another player. For each player
i ∈ N , let Ai be player i’s finite set of actions and let B be player n + 1’s finite set
of actions. At each stage t = 1, 2, . . ., each player chooses an action in his own set of
actions and if (a, b) = ((ai )i∈N , b) ∈ A × B is the action profile played, the payoff
for each team player i ∈ N is g(a, b) with g : A × B → R and the payoff for player
n + 1 is −g(a, b): for convenience we agree that team players are maximizing and
player n +1 is minimizing. After each stage, if a is the action profile played by players
i ∈ N , a signal s is drawn in a finite set S of signals with probability q(s|a), where
q : A → ∆(S). Player n + 1 observes (s, b) and each player i ∈ N observes (a, s, b):
we consider games where all team members have the same information which contains
the information of player n + 1.

A history of length t for the team is an element ht of Ht = (A×B×S)t , and a history
of length t for player n + 1 is an element hn+1

t of Hn+1
t = (B × S)t , by convention

H0 and Hn+1
0 are singletons. A behavioral strategy σ i for a team player i is a mapping

σ i : ∪t≥0 Ht → ∆(Ai ) and a behavioral strategy τ for player n + 1 is a mapping
τ : ∪t≥0 Hn+1

t → ∆(B). A profile of behavioral strategies (σ, τ ) = ((σ i )i∈N , τ )

induces a probability distribution Pσ,τ on the set of plays (A × B × S)∞ endowed
with the product σ -algebra.

Given a discount factor 0 < λ < 1, the discounted payoff for the team induced
by (σ, τ ) is: γλ(σ, τ ) = Eσ,τ [∑t≥1(1 − λ)λt−1g(at ,bt )] where (at ,bt ) denotes the
random action profile at stage t . The λ-discounted max min payoff of the game denoted
vλ is:

vλ = max
σ

min
τ
γλ(σ, τ )

The aim is to characterize and compute limλ→1 vλ.
Fix a strategy of the team. At each stage t , player n +1, given his own history, holds

a belief on the next action profile of the team, more precisely on the next profile of
mixed strategy that the team will use. Therefore, player n + 1’s state of mind can be
parameterized by a correlation system Z = ∑

k pkε⊗xi
k
. Here k represents the whole
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past history ht of the game up to stage t , and pk the probability that player n + 1
ascribes to it given his observations, i.e. Pσ,τ (ht |hn+1

t ). How does the uncertainty of
player n + 1 evolve at the next stage? Before stage t + 1, the uncertainty of player
n + 1 is measured by H(k). Let a be the random action profile played by the team
at stage t + 1 and s be the random signal induced. Player n + 1 observes neither k
nor a but only s. His new uncertainty is thus H(k, a|s). This leads to the following
definition.

Definition 4 Let Z = ∑
k pkε⊗i xi

k
. Let k be a random variable with law (pk), a be a

random variable with values in A and with conditional distribution ⊗i x i
k given {k = k}

and let s be the induced random signal. The entropy variation associated to Z is

∆H(Z) = H(k, a|s)− H(k)

Now we relate ∆H(Z) with the expected entropy J (Z). We recall the notion of
mutual information: given D ∈ ∆(A), let a be a random action profile with distribution
D and s be the induced random signal. The mutual information between a and s is

ID(a, s) : = H(s)− H(s|a) = H(a)− H(a|s)
= H(

∑

a

D(a)q(·|a))−
∑

a

D(a)H(q(·|a))

It is a well defined and continuous function of the distribution D.

Lemma 2 For each correlation system Z

∆H(Z) = J (Z)− ID(Z)(a, s)

Proof The chain rule for entropies gives

H(k, a, s) = H(s)+ H(k, a|s)
= H(k)+ H(a, s|k)
= H(k)+ H(a|k)+ H(s|a)

where the last equality holds since s is independent of k given a. Therefore,

∆H(Z) = H(a|k)+ H(s|a)− H(s)

= J (Z)− ID(Z)(a, s)

��
Gossner and Tomala [6] use these tools to characterize limλ vλ as follows:

Theorem 2 (Gossner and Tomala [6]) For c ∈ R, let

V (c) = max
Z :∆H(Z)≥c

min
b

ED(Z) g(a, b)
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Then limλ vλ exists and,

lim
λ
vλ = cav V (0)

with cav V the smallest concave function pointwise (weakly) greater than V .

We give an expression of V (c) using informationally optimal correlation.

Proposition 3 For c ∈ R, let

U (c) = max
D:ϕ(D)−ID(a,s)≥c

min
b

ED g(a, b)

Then, V (c) = U (c).

Proof Since ∆H(Z) = J (Z) − ID(Z)(a, s) and since Z is informationally optimal
(io) if it maximizes J (Z) under the constraints D(Z) = D,

U (c) = max
Zio:∆H(Z))≥c

min
b

ED(Z) g(a, b)

thus U (c) ≤ V (c). Conversely, given any Z which is feasible for V (c), one can replace
Z by an informationally optimal system Z ′ such that D(Z ′) = D(Z)without affecting
minb ED(Z) g(a, b). ��

3.2 A coordination game

We use Proposition 3 and Theorem 1 to give an explicit computation of the long run
min max value for the following game. The team is {1, 2} and plays against player 3.
Players 1 and 2 both choose between spending the evening at the bar ‘Golden Gate’
(G) or at the bar ‘Happy Hours’ (H ). Player 3 faces the same choice. The payoff for
the team players is 1 if they meet at the same bar and 3 chooses the other bar, otherwise
the payoff is 0. The payoff function is displayed below where 1 chooses the row, 2 the
column and 3 the matrix.

G H G H
G
H

(
0 0
0 1

) (
1 0
0 0

)

G H

The max min of the one-shot game in mixed strategies is 1/4 and may be obtained
in the repeated game by the team {1, 2} by playing the same mixed action (1/2, 1/2)
at every stage. The max min in correlated strategies of the one-shot game is 1/2. This
may be obtained by players 1 and 2 in the repeated game if they can induce player
3 to believe, at almost every stage, that (G,G) and (H, H) will both be played with
probability 1/2 and if their play is independent on player 3’s behavior. For example, if
player 3 has no information concerning the past moves of the opponents, then the team
{1, 2} may achieve its goal by randomizing evenly at the first stage, and coordinate all
subsequent moves on the first action of player 1.
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The case under study here is when player 3 observes the actions of player 2 but
not of player 1, i.e. S = A2 and q(a′2|a1, a2) = 1 if a′2 = a2 and q(a′2|a1, a2) = 0
otherwise. The study of this game with this signalling structure, which we denote Γ0,
was proposed by [14].

The following strategies for players 1 and 2 allow for partial correlation in the
repeated game:

– At odd stages, play
( 1

2 ,
1
2

) ⊗ ( 1
2 ,

1
2

)
,

– at even stages, repeat the previous move of player 1. Player 3’s belief is then that
(G,G) is played with probability 1/2 and (H, H) with the same probability.

The limit time-average payoff yielded by this strategy is 3/8. Define two correlations
systems as follows:

– Z 1
2

= ε 1
2 ⊗ 1

2
.

– Z1 = 1
2ε1⊗1 + 1

2ε0⊗0.

The distribution induced by Z1 is

( 1
2 0
0 1

2

)

. The distribution of signals under Z1

puts weight 1/2 on both G and H thus H(s) = 1. H(s|a) = 0 since the signal is
a deterministic function of the action profile. For each k, H(xk) = H(yk) = 0, so
J (Z1) = 0. The entropy variation is ∆H(Z1) = −1. One has J (Z 1

2
) = 2 and under

Z2, H(s) = 1 and H(s|a) = 0, so ∆H(Z 1
2
) = 1.

The above strategy consists of playing Z 1
2

at odd stages and Z1 at even stages, so
that the team cyclically gains and loses 1 bit of entropy. If player 3 plays a best reply at
each stage, the payoff obtained at odd stages is 1/4 and at even stages 1/2, thus in the
long-run player 3 gets 3/8. How much correlation can be achieved by the team {1, 2}
in this game? Can the team improve on 3/8? Is it possible to achieve full correlation?
We apply now our results to answer these questions.

Given D =
(

d1 d2
d3 d4

)

, we let π(D) = minb ED g(a, b) = min {d1, d4}. We intro-

duce a family of correlation systems of particular interest.

Notation 3 For x ∈ [0, 1] let Z(x) = 1
2εx⊗x + 1

2ε(1−x)⊗(1−x).

It follows from Theorem 1 that each Z(x) is informationally optimal. Actually, (Z(x))x
is the family of informationally optimal correlation systems associated to probability
measures that put equal weights on (G,G) and on (H, H), and equal weights on
(G, H) and on (H,G). Against each Z(x), player 3 is thus indifferent between his
two actions and therefore,

π(D(Z(x))) = 1

2
(x2 + (1 − x)2).

For each k = 1, 2, H(xk) = H(yk) = h(x) and the law of signals under Z(x) is
( 1

2 ,
1
2 ) thus,

∆H(Z(x)) = 2h(x)− 1.
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The following result, proved in Sect. 4.3, shows that the map U can be obtained from
the family (Z(x))x .

Proposition 4 Consider the game Γ0. For any c ∈ [−1, 1],

U (c) = π(D(Z(xc))) = 1

2
(x2

c + (1 − xc)
2)

with xc the unique point in
[
0, 1

2

]
such that 2h(xc)− 1 = c. Moreover, U is concave.

It follows that the long-run max min for the game Γ0 is U (0).

Corollary 1 For the game Γ0, limλ vλ is

v = 1

2
(x2

0 + (1 − x0)
2)

where x0 is the unique solution in [0, 1
2 ] of

−x log(x)− (1 − x) log(1 − x) = 1

2

Numerically, 0.402 < v < 0.4021.

Remark 1 In contrast with a finite zero-sum stochastic game, the max min here is
transcendental. A similar property holds for the asymptotic value of a repeated game
with incomplete information on both sides (see Mertens and Zamir [10]) and of a “Big
Match” with incomplete information on one side (see Sorin [15]).

3.3 On the concavity/convexity of the map U

The function U is determined by the one-shot game and the signalling function. Since
we deal with the computation of cav U (0) two cases may arise: either cav U (0) = U (0)
(for example, if U is concave) or cav U (0) > U (0) (if there exists two correlation
systems Z1, Z2 and 0 < λ < 1 s.t.λπ(D(Z1)) + (1 − λ)π(D(Z2)) > U (0) and
λ∆H(Z1)+ (1 − λ)∆H(Z2) ≥ 0).

In the previous section, we have shown that the map U corresponding to Γ0 is
concave. Goldberg [4] provides an example of the second case. Consider the game
where payoffs for players 1 and 2 are given by the following matrices:

G H G H
G
H

(
1 0
3 1

) (
1 3
0 1

)

G H

The signals are deterministic and are given by the following matrix (they depends only
on the moves of players 1 and 2):
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G H
G
H

(
s s′
s′′ s

)

The max min in mixed strategies of the one-shot game is 5/4 and is obtained by the
distribution 1

2 ⊗ 1
2 . Allowing for correlation, the max min is 3/2 and is obtained by

the distribution 1
2 0 ⊗ 1 + 1

2 1 ⊗ 0.
Relying on Theorem 1, Goldberg shows that U is convex so that its concavification

is linear, thus cav U (0) = 4
3 = 2

3π(D(Z
′)) + 1

3π(D(Z
′′)) where Z ′ = ε 1

2 ⊗ 1
2

and

Z ′′ = 1
2ε0⊗1 + 1

2ε1 ⊗ 0.

4 Proofs of the main results

4.1 Proof of Theorem 1

For each integer m, let Cm(D) be the set of set vectors (pk, xk, yk)
m
k=1 where

⎧
⎪⎪⎨

⎪⎪⎩

∀ k, pk ≥ 0,
m∑

k=1
pk = 1, xk ∈ X1, yk ∈ X2

m∑

k=1
pk xk ⊗ yk = D

This set is clearly compact and the mapping

(pk, xk, yk)
m
k=1 	→

m∑

k=1

pk(H(xk)+ H(yk))

is continuous on it. The problem (PD) can thus be expressed as

sup
m

max
Cm (D)

m∑

k=1

pk(H(xk)+ H(yk)) (PD)

Denote by (Pm,D), m ≥ 2, the second maximization problem where m is fixed

max
Cm (D)

m∑

k=1

pk(h(xk)+ h(yk)) (Pm,D)

4.1.1 Solving (P2,D).

Given D ∈ X12, a point in C2(D) is a vector (p, (x1, y1), (x2, y2)) ∈ [0, 1]5 such that

D = p

(
x1 y1 x1(1 − y1)

(1 − x1)y1 (1 − x1)(1 − y1)

)

+ (1 − p)

(
x2 y2 x2(1 − y2)

(1 − x2)y2 (1 − x2)(1 − y2)

)
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The problem (P2,D) is equivalent to

max
C2(D)

p(h(x1)+ h(y1))+ (1 − p)(h(x2)+ h(y2)) (P2,D)

We are concerned with the computation of the set of solutions

Λ(D) := argmaxC2(D) p(h(x1)+ h(y1))+ (1 − p)(h(x2)+ h(y2))

The problem (P2,D) is the maximization of a continuous function on a compact set,
thus Λ(D) �= ∅ if C2(D) �= ∅. We will use the following parametrization: for D =(

d1 d2
d3 d4

)

, set r = d1+d2, s = d1+d3 and t = d1. The vector (p, (x1, y1), (x2, y2)) ∈
[0, 1]5 is in C2(D) if and only if:

⎧
⎨

⎩

px1 + (1 − p)x2 = r
py1 + (1 − p)y2 = s

px1 y1 + (1 − p)x2 y2 = t

Note that det(D) := d1d4 − d2d3 = t − rs.
The remainder of this section is devoted to the proof of the following characteriza-

tion of Λ(D):

Proposition 5 (A) If det(D) = 0, then

Λ(D) = {(p, (r, s), (r, s)) : p ∈ [0, 1]}
∪

{
(1, (r, s), (y1, y2)) : (y1, y2) ∈ [0, 1]2

}

∪
{
(0, (x1, x2), (r, s)) : (x1, x2) ∈ [0, 1]2

}

(B) If det(D) < 0,

Λ(D) =
{(

β − r

β − α
, (α, β), (β, α)

)

;
(
α − r

α − β
, (β, α), (α, β)

)}

where α and β are the two solutions of:

X2 − (2d1 + d2 + d3)X + d1 = 0.

(C) If det(D) > 0,

Λ(D) =
{(

β − (1 − r)

β − α
, (1 − α, β), (1 − β, α)

)

;
(
α − (1 − r)

α − β
, (1 − β, α), (1 − α, β)

)}
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where α and β are the two solutions of

X2 − (2d3 + d4 + d1)X + d3 = 0.

Remark that in each case all solutions correspond to the same correlation system.
Solutions of (P2,D) thus always lead to a unique correlation system.

Point (A). The formula given in proposition 5 for Λ(D) clearly defines a subset of
C2(D). Note that det(D) = 0 if and only if D = r ⊗ s. (A) follows then directly from
point (3) of lemma 2.

Points (B) and (C). First we show that these cases are deduced from one another

by symmetry. Take a distribution D =
(

d1 d2
d3 d4

)

and a point (p, (x1, y1) , (x2, y2)) in

Λ(D). Let then D′ =
(

d3 d4
d1 d2

)

and remark that

– det(D′) = −det(D)
– (p, (1 − x1, y1) , (1 − x2, y2)) ∈ Λ(D′).

Remark also that the two solutions given in Proposition 5 for case (C) are deduced
from the solutions for case (B) by symmetry. We thus need to prove (B) only.

Since α and β are solutions of:

X2 − (2d1 + d2 + d3)X + d1 = 0.

we have α + β = r + s and αβ = t . Thus α, β, β−r
β−α and α−r

α−β are in [0, 1]. One then
easily verifies that:

⎧
⎪⎪⎨

⎪⎪⎩

β−r
β−α α + α−r

α−β β = r

β−r
β−α β + α−r

α−β α = s

β−r
β−ααβ + α−r

α−β βα = r

The solutions given in proposition 5 for case (B) are thus in C2(D) which is therefore
non empty. In particular, any 2 × 2 joint distribution can be decomposed as a convex
combination of two independent distributions.

We solve now the case where D is in the boundary of X12.

Case 1 D is in the boundary

Assuming det(D) < 0, we get either

D = D1 =
⎛

⎝
0 r

s 1 − r − s

⎞

⎠
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or

D = D2 =
⎛

⎝
1 − r − s s

r 0

⎞

⎠

with rs > 0. We solve for D1, the other case being similar. The vector (p, (x1, y1) ,

(x2, y2)) is in Λ(D1) if and only if

px1 + (1 − p)x2 = r
py1 + (1 − p)y2 = s

px1 y1 + (1 − p)x2 y2 = 0

Since D is not the product of its marginals, necessarily p ∈ (0, 1), and x1 y1 = x2 y2 =
0. We assume wlog. x1 = 0. We get then x2 = r

1−p �= 0, y2 = 0, and y1 = s
p . The

problem (P2,D1) is then reduced to maximizing the expression over p ∈ (0, 1)

ph

(
s

p

)

+ (1 − p)h

(
r

1 − p

)

A solution in (0, 1) exists, from the non emptiness ofΛ(D1). The first order condition
writes

h

(
s

p

)

− s

p
h′

(
s

p

)

= h

(
r

1 − p

)

− r

1 − p
h′

(
r

1 − p

)

The map f : (0, 1) → R given by f (x) = h(x) − xh′(x) has derivative f ′(x) =
−xh′′(x) > 0, hence is strictly increasing. Thus, the first order condition is equivalent
to r

1−p = s
p , or p = s

r+s . We have thus shown

Λ(D1) =
{(

s

r + s
, 0, r + s, r + s, 0

)

;
(

r

r + s
, r + s, 0, 0, r + s

)}

Case 2 D is interior

We assume now that mini∈{1,...,4}(di ) > 0. The proof is organized in a series of
lemmata. Lemma 3 proves that all solutions are interior. Therefore they must verify
a first order condition. First order equations are established in lemma 4. Lemma 5
studies the solutions of the first order equations and lemma 6 shows uniqueness of
those solutions. We conclude the proof with lemma 7.

We prove now that any solution of (P2,D) is interior. This is due to the fact that the
entropy function has infinite derivative at the boundary.

Lemma 3 If mini∈{1,...,4}(di ) > 0 and det(D) �= 0 then Λ(D) ⊂ (0, 1)5.

Proof We prove that elements of Λ(D) are interior. Take a point Z = (p, (x1, y1),

(x2, y2)) in C2(D). Since det(D) �= 0, 0 < p < 1. We show that if x1 = 0, Z is
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not optimal for (P2,D). The proof is completed by symmetry. We assume thus x1 = 0
and construct a correlation system Z ε = (pε, (xε1, yε1), (x

ε
2, yε2)) in C2(D) as follows.

Since Z ∈ C2(D)

⎧
⎨

⎩

(1 − p)x2 = r
py1 + (1 − p)y2 = s
(1 − p)x2 y2 = t

Take ε > 0 and let

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pε = p + ε

xε1 =
(

1 − p
pε

)
x2

xε2 = x2
yε1 = y1

yε2 = 1−p
1−pε y2 − pε−p

1−pε y1

Since t = (1− p)x2 y2 �= 0, there exists ε0 > 0 such that Z ε ∈ [0, 1]5 for 0 < ε ≤ ε0.
A simple computation shows that Z ε is in C2(D). We now compare the objective
function of (P2,D) at Z ε and at Z .

(
pε

(
h(xε1)+ h(yε1)

) + (1 − pε)
(
h(xε2)+ h(yε2)

))

− (p [h(x1)+ h(y1)] + (1 − p) [h(x2)+ h(y2)])

= qh(xε1)+ (1 − pε)h(yε2)− (1 − p)h(y2)

= (p + ε)h

((

1 − p

p + ε

)

x2

)

+ (1 − p − ε)h

(
1 − p

1 − p − ε
y2 − ε

1 − p − ε
y1

)

− (1 − p)h(y2)

= ph (εx2)+ (1 − p)h

(

y2 − ε

1 − p
y1

)

− (1 − p)h(y2)+ o(ε)

= ph(εx2)− εy1h′(y2)+ o(ε)

= p [−εx2 ln(εx2)− (1 − εx2) ln(1 − εx2)] − εy1h′(y2)+ o(ε)

= ε
[−px2 ln(εx2)− y1h′(y2)+ x2 + o(1)

]

> 0

for ε small enough. ��

Solutions of (P2,D) being interior, they must satisfy the first order conditions. Given
x and y in (0, 1), recall that the Kullback distance dK (x ‖y) of x with respect to y is
defined by

dK (x ‖y) = x log
x

y
+ (1 − x) log

1 − x

1 − y

123



Informationally optimal correlation

A direct computation shows

dK (x ‖y) = h(y)− h(x)− h′(y)(y − x),

where h′ denotes the derivative of h.

Lemma 4 Suppose that mini (di ) > 0 and det(D) �= 0. If (p, x1, y1, x2, y2) ∈ Λ(D)
then:

{
dK (x2 ‖x1 ) = dK (y1 ‖y2 )

dK (x1 ‖x2 ) = dK (y2 ‖y1 )
(E)

Proof The Lagrangian of (P2,D) writes

L(p, x1, y1, x2, y2, α, β, γ ) = p(h(x1)+ h(y1))+ (1 − p)(h(x2)+ h(y2))

+α(px1 + (1 − p)x2 − r)+ β(py1 + (1− p)y2 − s)

+ γ (px1 y1 + (1 − p)x2 y2 − t)

The partial derivatives are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂p = (h(x1)+ h(y1))− (h(x2)+ h(y2))+ α(x1 − x2)+ β(y1 − y2)

+ γ (x1 y1 − x2 y2)
∂L
∂x1

= p
(
h′(x1)+ α + γ y1

)

∂L
∂x2

= (1 − p)
(
h′(x2)+ α + γ y2

)

∂L
∂y1

= p
(
h′(y1)+ β + γ x1

)

∂L
∂y2

= (1 − p)
(
h′(y2)+ β + γ x2

)

If (p, x1, y1, x2, y2) ∈ Λ(D), there exists (α, β, γ ) such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(h(x1)+ h(y1))− (h(x2)+ h(y2))+ α(x1 − x2)

+β(y1 − y2)+ γ (x1 y1 − x2 y2) = 0 (E1)
h′(x1)+ α + γ y1 = 0 (E2)
h′(x2)+ α + γ y2 = 0 (E3)
h′(y1)+ β + γ x1 = 0 (E4)
h′(y2)+ β + γ x2 = 0 (E5)

The combination of equations (E1)− x1 × (E2)+ x2 × (E3) gives

(h(x1)+ h(y1))− (h(x2)+ h(y2)) = x1h′(x1)− x2h′(x2)− β(y1 − y2) (1)

The combination y1((E4)− (E5))+ (x1 − x2)(E2) writes

y1
(
h′(y1)− h′(y2)

) = h′(x1)(x1 − x2)+ α(x1 − x2) (2)
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Equations (1) and (2) give

h(x1)− h(x2)− h′(x1)(x1 − x2) = h(y2)− h(y1)− h′(y2)(y2 − y1)

which rewrites

dK (x2 ‖x1) = dK (y1 ‖y2)

Similarly we obtain

dK (x1 ‖x2) = dK (y2 ‖y1)

��
We give now the solutions of the equations (E).

Lemma 5 Assume dK (x ‖a) = dK (b ‖y) and dK (a ‖x) = dK (y ‖b). Then one of the
following holds:

(F1) x = b, y = a;
(F2) x = 1 − b, y = 1 − a;
(F3) x = a, y = b.

Proof Fix a and b in (0, 1). We need to solve the system

{
dK (x ‖a )− dK (b ‖y ) = 0
dK (a ‖x )− dK (y ‖b ) = 0

(S)

It is immediate to check that (F1), (F2), and (F3) are solutions of (S). Letting
S(x, y) = (dK (x ‖a )− dK (b ‖y ), dK (a ‖x )− dK (y ‖b )), the Jacobian J (x, y) of S
writes:

J (x, y) = det

(
ln( x

1−x )− ln( a
1−a )

1−a
1−x − a

x
1−b
1−y − b

y ln( y
1−y )− ln

(
b

1−b

)

)

= ln
x(1 − a)

a(1 − x)
× ln

y(1 − b)

b(1 − y)
− (x − a)× (y − b)

x(1 − x)y(1 − y)

since for all z > 1, 0 < ln(z) < z − 1, if x > a and y > b then

0 < ln
x(1 − a)

a(1 − x)
<

x(1 − a)

a(1 − x)
− 1 = x − a

1 − x
<

x − a

x(1 − x)

and

0 < ln
y(1 − b)

b(1 − y)
<

y(1 − b)

b(1 − y)
− 1 = y − b

1 − y
<

y − b

y(1 − y)
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Hence, on the domain {x > a, y > b} one has

ln
x(1 − a)

a(1 − x)
× ln

b(1 − y)

y(1 − b)
<

x − a

1 − x
× y − b

1 − y
<
(x − a)× (b − y)

x(1 − x)y(1 − y)
.

Thus J (x, y) < 0 on the domain {x > a, y > b}. The mappings x 	→ dK (x ‖a ) :=
fa(x) and y 	→ dK (b ‖y ) := gb(y) are differentiable and strictly increasing on the
intervals (a, 1) and (b, 1), respectively, and setting F(x) := g−1

b ◦ fa(x)− f −1
b ◦ga(x),

S(x, y) = 0 if and only if F(x) = 0 and y = g−1
b ◦ fa(x). Then if x0 ∈ (a, 1) is

such that F(x0) = 0, we let y0 := g−1
b ◦ fa(x0) = f −1

b ◦ fa(x0) ∈ (b, 1) and

F ′(x0) = J (x0,y0)

f
′
b (y0)×g′

b(y0)
< 0, i.e. at a zero of F , F ′(x0) < 0. F admits thus at most

one zero.
If a + b < 1, (1 − b, 1 − a) is indeed a solution of (S) and we deduce

D1. If a +b < 1, then (1−b, 1−a) is the unique solution of (S) on {x > a, y > b}.
Using z − 1 < ln(z) < 0 for all z < 1, we deduce that J (x, y) < 0 on the domain
{x < a, y < b}. We then obtain
D2. If a +b > 1, then (1−b, 1−a) is the unique solution of (S) on {x < a, y < b}.
Similar arguments show that
D3. If a < b, then (b, a) is the unique solution to (S) on {x > a, y < b}.
D4. If a > b, then (b, a) is the unique solution to (S) on {x < a, y > b}.
We are now in position to complete the proof of the lemma. First, if (x −a)(y −b) = 0
then (S) implies x = a and y = b.
If (x − a)(y − b) > 0, we obtain (x, y) = (1 − b, 1 − a) as follows:

– If a + b ≤ 1:
– If x < a and y < b then x + y < a + b ≤ 1. Apply D1 reversing the roles of
(x, y) and (a, b).

– If x > a, y > b and a + b �= 1. Apply D1.
– If x > a, y > b and a + b = 1 then x + y > 1. Apply D2, reversing the roles.

– If a + b > 1:
– If x > a and y > b, then x + y > a + b > 1. Apply D2, reversing the roles.
– If x < a and y < b, apply D2.

If (x − a)(y − b) < 0 we obtain (x, y) = (b, a) as follows:

– If a ≤ b:
– If x < a and y > b then x < y. Reverse the roles and apply D3.
– If x > a, y < b and a < b, apply D3.
– If x > a, y < b and a = b then x > y. Reverse the roles and apply D4.

– If a > b:
– If x > a and y < b then x > y. Reverse the roles and apply D4.
– If x < a and y > b, apply D4. ��

Lemma 6 1. If det(D) < 0, solutions of (P2,D) are of type (F1).
2. If det(D) > 0, solutions of (P2,D) are of type (F2).
3. If det(D) = 0, solutions of (P2,D) are of type (F3).
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Proof Let (p, a, b) ∈ [0, 1]3, it is straightforward to check that

1. det [p(a ⊗ b)+ (1 − p)(b ⊗ a)] ≤ 0
2. det [p(a ⊗ b)+ (1 − p) [1 − b] ⊗ [1 − a]] ≥ 0

The result follows then directly from lemma 5. ��
We now conclude the proof of proposition 5

Lemma 7 Let D such that det(D) < 0. Then

Λ(D) =
{(

β − r

β − α
, α, β, β, α

)

;
(

r − α

β − α
, β, α, α, β

)}

where α and β are the two solutions of the equation X2 − (r + s)X + t = 0.

Proof Assuming det(D) < 0, it follows from lemma 6 that any element ofΛ(D) is a
tuple (p, (x, y), (y, x)), with

⎧
⎨

⎩

px + (1 − p)y = r
py + (1 − p)x = s

pxy + (1 − p)yx = t

We deduce then
{

x + y = r + s
xy = t

so that x and y must be solutions of the equation: X2 − (r + s)X + t = 0 and p is
given by p = y−r

y−x . Note that

∆ = (r + s)2 − 4t ≥ 4(rs − t) = −4 det(D) > 0

Hence, this equation admits two distinct solutions α and β. ��
The proof of proposition 5 is thus complete.

4.2 Solving
(
Pm,D

)

To conclude the proof of Theorem 1, we prove that for every D ∈ X12, the value of
Pm,D , m > 2 and of P2,D are the same. Recall from Lemma 1 that if (pk, xk, yk)k∈K

is optimal for Pm,D , then for any pair (k1, k2) s.t. pk1 + pk2 > 0, the correlation system((
pk1

pk1+pk2
, xk1 , yk1

)
;
(

pk2
pk1+pk2

, xk2 , yk2

))
is optimal for the distribution it induces.

We deduce the solutions of
(
Pm,D

)
and of (PD) from the form of solutions of

(
P2,D

)

Lemma 8 Let (pk, xk, yk)
m
k=1 ∈ Cm(D) such that for all k, pk > 0.

If (pk, xk, yk)
m
k=1 is optimal for (PD) then one of the following holds

– ∀ k, if (xk, yk) �= (x1, y1) then (xk, yk) = (y1, x1)

– ∀ k, if (xk, yk) �= (x1, y1) then (xk, yk) = (1 − y1, 1 − x1)
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Proof Suppose that (x2, y2) �= (x1, y1). Since (pk, xk, yk)k=1,...,m is optimal for

(PD),
((

p1
p1+p2

, x1, y1

)
,
(

p2
p1+p2

, x2, y2

))
is an optimal correlation system. Then

one has either (x2, y2) = (y1, x1) or (x2, y2) = (1 − y1, 1 − x1). Suppose wlog. that
(x2, y2) = (y1, x1). Let us prove that if (xk, yk) �= (x1, y1) then we have also
(xk, yk) = (y1, x1). If it is not the case, we must have (xk, yk) = (1 − y1, 1 − x1).
Thus we deduce that (xk, yk) = (1 − x2, 1 − y2). This is compatible with the form of
optimal correlation system (with m = 2), only if we have either (1 − x2, 1 − y2) =
(1− y2, 1− x2) or (1− x2, 1− y2) = (y2, x2). This means that we must assume either
x2 = y2 or x2 = 1 − y2. If x2 = y2 then, since (x2, y2) = (y1, x1), we should have
x1 = y1. This implies that (x2, y2) = (x1, y1), a contradiction with our assumption
that (x2, y2) �= (x1, y1). Now, if x2 = 1 − y2 we deduce that (xk, yk) = (y2, x2) from
which we get (xk, yk) = (x1, y1), also in contradiction with our assumption. Hence,
if (x2, y2) = (y1, x1) then ∀k, if (xk, yk) �= (x1, y1) one has (xk, yk) = (y1, x1). ��

This ends the proof of Theorem 1.

4.3 Proof of Proposition 4

We use Theorem 1 to solve the problem

U (c) = max
D:ϕ(D)−ID(a,s)≥c

π(D)

for the game Γ0.

Definition 5 A correlation system Z is dominated for Γ0 if there exists Z ′ such that
π(D(Z ′)) ≥ π(D(Z)) and ∆H(Z ′) ≥ ∆H(Z) with at least one strict inequality. Z
is undominated otherwise.

From Theorem 1, undominated correlation systems must be of the form pεx⊗y +
(1− p)εy⊗x or pεx⊗y + (1− p)ε1−y⊗1−x . The next lemma shows that the first family
of solutions is dominated.

Lemma 9 Given Z = pεx⊗y + (1 − p)εy⊗x , let Z ′ = εx⊗y and Z ′′ = εy⊗x . Then:

1. π(D(Z)) = π(D(Z ′)) = π(D(Z ′′))
2. ∆H(Z) ≤ max(∆H(Z ′),∆H(Z ′′))with strict inequality if x �= y and 0< p< 1.

Proof For point (1), the common value is min(xy, (1 − x)(1 − y)). Point (2) follows
from the formulas ∆H(Z) = h(x)+ h(y)− h(px + (1 − p)y), ∆H(Z ′) = h(x)+
h(y)− h(x), ∆H(Z ′′) = h(y)+ h(x)− h(y) and the strict concavity of h. ��

We search now solutions among the family of optimal correlation systems pεx⊗y +
(1 − p)ε1−y⊗1−x .

Lemma 10 Let Z = pεx⊗y + (1 − p)ε1−y⊗1−x , 0 < p < 1 and x �= 1 − y. If Z is
undominated for Γ0, then p = 1

2 .
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Proof Denote the distribution induced by Z , D(Z) =
(

d1(Z) d2(Z)
d3(Z) d4(Z)

)

Assuming x �= 1 − y, p = 1
2 is equivalent to d1(Z) = d4(Z). Assume by contradic-

tion that d1(Z) �= d4(Z) and by symmetry d1(Z) < d4(Z). The Lagrangian of the
maximization problem,

max π(D(Z)){
Z = ((p, x, y); (1 − p, 1 − y, 1 − x))

∆H(Z) ≥ c

writes

L = pxy + (1 − p)(1 − x)(1 − y)− α(h(x)+ h(y)− h(px + (1 − p)(1 − y)))

Let ỹ = 1 − y and z = px + (1 − p)ỹ:

⎧
⎪⎨

⎪⎩

∂L
∂p = (x − ỹ)(1 − αh′(z))
∂L
∂x = −ỹ + p + α(h′(x)− ph′(z))
∂L
∂y = x − 1 + p + α(−h′(ỹ)+ (1 − p)ph′(z))

so that optimality of Z implies:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h′(z) = 1
α

ỹ = h′(x)
h′(z)

x = h′(ỹ)
h′(z)

From the first two conditions we deduce that h′(x)h′(ỹ) ≥ 0, hence x and ỹ lie on the
same side of 1/2. But then |h′(z)| ≥ |h′(x)| and |h′(z)| ≥ |h′(ỹ)| is inconsistent with
z lying in the strict interval of extremities x and ỹ: 0 < p < 1, x �= ỹ. ��

Lemma 11 Let Z = 1
2εx⊗y + 1

2ε1−y⊗1−x , with x �= 1 − y. If Z is not dominated for
Γ0, then x = y.

Proof Let z = x+y
2 , and Z ′ = (( 1

2 , z, z
)
,
( 1

2 , 1 − z, 1 − z
))

. We prove that Z ′ domi-
nates Z in G if x �= y. For payoffs, direct computation leads π(D(Z ′))−π(D(Z)) =
(

x+y
2 )2. For entropy variations, letψ be defined byψ(x, y) = h(x)+h(y)−h( x+1−y

2 ).
Then ∆H(Z) = ψ(x, y) = ψ(y, x) and ∆H(Z ′) = ψ

( x+y
2 ,

x+y
2

)
. Inequality

ψ
( x+y

2 ,
x+y

2

)
>

ψ(x,y)+ψ(y,x)
2 will follow from the strict concavity ofψ . The Jacobian

matrix of ψ is

J =
(

h′′(x)− 1
4 h′′( x+1−y

2 ) − 1
4 h′′( x+1−y

2 )

− 1
4 h′′( x+1−y

2 ) h′′(y)− 1
4 h′′( x+1−y

2 )

)
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Then, traceJ = h′′(x)+h′′(y)− 1
2 h′′

(
x+1−y

2

)
= h′′(x)+h′′(1− y)− 1

2 h′′
(

x+1−y
2

)

is negative since h′′ : t 	→ − 1
ln 2

(
1
t + 1

1−t

)
is both concave and negative on (0, 1).

Computation of det J shows:

det J = 1

(ln 2)2
(1 − x)(1 − y)+ xy

xy(1 − x)(1 − y)(1 − x + y)(1 − y + x)
> 0

Hence the strict concavity of ψ , and the claim follows. ��
We prove now Proposition 4. From the two previous lemmas, it follows that an

undominated correlation system is of the form Z(x) = 1
2εx⊗x + 1

2ε1−x⊗1−x with
x ∈ [0, 1]. The graph of Fig. 1 c 	→ U (c) is thus the set

C =
{

(∆H(Z), π(D(Z))), Z = 1

2
εx⊗x + 1

2
ε1−x⊗1−x and x ∈ [0, 1]

}

By symmetry one needs only to consider to x ∈ [0, 1
2 ], and letting (s(x), t (x)) =

(2h(x) − 1, 1
2 x2 + 1

2 (1 − x)2), C is the parametric curve {(s(x), t (x)), x ∈ [0, 1
2 ]}.

Since the slope α(x) of C at (s(x), t (x)) is

α(x) = dt (x)/dx

ds(x)/dx
= 1 − 2x

log(1 − x)− log(x)

and

α′(x) = 2x − 1 + 2x(1 − x) ln(1 − 1
x )

ln(2)x(1 − x)(log(1 − x)− log(x))2

The numerator of this expression has derivative (1−2x) ln
( 1

x − 1
)
> 0, and takes the

value 0 at x = 1
2 , hence it is nonnegative and so isα′(x). We conclude that C is concave

Fig. 1 The graph of U
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and that U (c) = π(D(Z(xc))) with ∆H(Z(xc)) = 2h(xc) − 1 = c and cav U (0) =
U (0). This value is 1

2 x2 + 1
2 (1 − x)2, where 0 < x < 1 solves h(x) = 1

2 . Numerical
resolution yields 0.1100 < x < 0.1101 and 0.4020 < 1

2 x2 + 1
2 (1 − x)2 < 0.4021.
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