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Abstract

An observer of a process (xt) believes the process is governed by Q whereas the true law is P. We bound the expected average
distance between P(xt |x1, . . . , xt−1) and Q(xt |x1, . . . , xt−1) for t = 1, . . . , n by a function of the relative entropy between the
marginals of P and Q on the n first realizations. We apply this bound to the cost of learning in sequential decision problems and
to the merging of Q to P.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A bayesian agent observes the successive realizations of a process of law P, and believes the process is governed
by Q. Following Blackwell and Dubins (1962), Q merges to P when the observer’s updated law on the future of the
process (given by Q) to the true one (given by P).

Different merging notions are defined depending on the type of convergence required, and merging theory studies
conditions on Q and P under which Q merges to P under these different definitions (see e.g. Kalai and Lehrer, 1994;
Lehrer and Smorodinsky, 1996). Merging theory has led to several applications such as calibrated forecasting (Kalai et
al., 1999), repeated games with incomplete information (Sorin, 1999), and the convergence of plays to Nash equilibria
in repeated games (Kalai and Lehrer, 1993).

When Q merges to P, the agent’s predictions about the process become eventually accurate, but may be far from
the truth during an arbitrarily long period of time. The present paper focuses on the average error in prediction during
the first stages. Let en represent the (variational) distance between the agent’s prediction and the true law of the stage
n’s realization of the process, and (ēn)n denote the Cesaro means of (en)n. Relying on Pinsker’s inequality, we bound
the expected average error in prediction up to stage n, En = EP ēn, by a function of the relative entropy between the
law Pn of the process and the agent’s belief Qn up to stage n. The advantage of the relative entropy expression is that
it allows explicit computations in several cases.

We present applications to merging theory and to the cost of learning in repeated decision problems.
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A natural notion of merging is to require that the agent’s expected average prediction errors vanish as time goes by.
In this case we say that Q almost weakly merges on average (AWMA) to P. In Section 4 we relate AWMA to almost
weak merging as introduced by Lehrer and Smorodinsky (1996). We show that AWMA holds whenever the relative
entropy between Pn and Qn is negligible with respect to n, i.e. limnd(Pn‖Qn)/n = 0 (Theorem 11) and derive rates
of convergence for merging. It is worth noting that limnd(Pn‖Qn)/n = 0 does not imply absolute continuity of P with
respect to Q, the only general condition in the literature for which a rate of convergence for merging is known (see
Sandroni and Smorodinsky, 1999). We also derive conditions on a realization of the process for merging of Q to P to
occur along this realization.

A decision maker in a n-stage decision problem facing a process of law P and whose belief on the process is Q is
lead to use sub-optimal decisions rules, and suffers a consequential loss in terms of payoffs. In Section 5 we show that
this loss can be bounded by expressions in En, thus in d(Pn‖Qn).

2. Preliminaries

Let X be a finite set and Ω = X∞ be the set of sequences in X. An agent observes a random process (x1, . . . , xn, . . .)
with values in X whose behavior is governed by a probability measure P on Ω, endowed with the product σ-field. The
agent believes that the process is governed by the probability measure Q.

Given a sequence ω = (x1, . . . , xn, . . .), ωn = (x1, . . . , xn) denotes the first n components of ω and we identify it
with the cylinder generated by ωn, i.e. the set of all sequences that coincide with ω up to stage n. We let Fn be the
σ-algebra spanned by the cylinders at stage n and F the product σ-algebra on ω, i.e. spanned by all cylinders. We shall
denote by P(·|ωn) the conditional distribution of xn+1 given ωn under P (defined arbitrarily when P(ωn) = 0) and
similarly for Q. By convention, P(·|ω0) is the distribution of x1.

The variational distance between two probability measures p and q over X is:

‖p − q‖ = sup
A⊂X

|p(A) − q(A)| = 1
2

∑

x

|p(x) − q(x)|

Definition 1. The variational distance between P and Q at stage n at ω is:

en(P, Q)(ω) = ‖P(·|ωn−1) − Q(·|ωn−1)‖

The average variational distance between P and Q at stage n at ω is:

ēn(P, Q)(ω) = 1
n

n∑

m=1

em(P, Q)(ω)

Recall that the relative entropy between p and q is

d(p‖q) =
∑

x

p(x)ln
p(x)
q(x)

where p(x)ln(p(x)/q(x)) = 0 whenever p(x) = 0, (p(x) > 0, q(x) = 0 ⇒ p(x)ln(p(x)/q(x)) = +∞). This quantity is
non-negative, equals zero if and only if p = q and is finite if and only if (q(x) = 0 ⇒ p(x) = 0). Pinsker’s inequality
bounds the variational distance by a function of the relative entropy as follows (see e.g. Cover and Thomas, 1991;
Lemma 12.6.1, p. 300):

‖p − q‖ ≤
√

d(p‖q)
2

3. Relative entropy and average variational distance

Definition 2. The local relative entropy between P and Q at stage n at ω is:

dn(P, Q)(ω) =
n∑

m=1

d(P(·|ωm−1)‖Q(·|ωm−1))

One has:
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Proposition 3. For each n and ω:

ēn(P, Q)(ω) ≤
√

1
2n

dn(P, Q)(ω)

Proof. This follows directly from Pinsker’s inequality and from the concavity of the square root function, by using
Jensen’s inequality. !

We denote by En(P, Q) the expected average variational distance:

En(P, Q) := EP ēn(P, Q)

We let Pn (resp. Qn) be the marginal of P on the n first coordinates, i.e. Pn is the trace of P on Fn. The expected average
variational distance is bounded by the relative entropy as follows:

Proposition 4.

En(P, Q) ≤
√

1
2n

d(Pn‖Qn)

Proof. From Proposition 3 and Jensen’s inequality:

En(P, Q) ≤
√

1
2n

EP dn(P, Q)(ω)

Now, either by direct computation or by applying the chain rule for relative entropies (e.g. Cover and Thomas, 1991;
Theorem 2.5.3, p. 23):

EP dn(P, Q)(ω) = d(Pn‖Qn) !

4. Applications to merging theory

Merging theory studies whether the beliefs of the agent given by Q, updated after successive realizations of the
process, converge to the true future distribution, given by P.

The next definitions are standard in merging theory (see Blackwell and Dubins, 1962; Kalai and Lehrer, 1993, 1994;
Lehrer and Smorodinsky, 1996, 2000).

• Q weakly merges to P if en(P, Q)(ω) goes to zero P-a.s. as n goes to infinity.
• Q almost weakly merges to P at ω if en(P, Q)(ω) goes to zero on a full set of integers. That is, for every ε > 0, there

is a set N(ω, ε) such that limn(1/n)|N(ω, ε) ∩ {1, . . . , n}| = 1 and en(P, Q)(ω) < ε for each n ∈ N(ω, ε).
• Q almost weakly merges to P if Q almost weakly merges to P at P-almost every ω.

The following shows that almost weak merging can be formulated through the average variational distance.

Proposition 5. Q almost weakly merges to P at ω if and only if ēn(P, Q)(ω) goes to zero as n goes to infinity.

Proof. Let (an) be a bounded sequence of non-negative numbers. We say that (an) goes to zero with density one if
for every ε > 0, the set Mε of n’s such that an ≤ ε has density one: limn(1/n)|Mε ∩ {1, . . . , n}| = 1.

The proposition is a consequence of the following claim:

Claim 6. The sequence (an) goes to zero with density one if and only if (1/n)
∑n

m=1am goes to zero as n goes to
infinity.
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Proof of the claim. The Cesaro mean is:

1
n

n∑

m=1

am = 1
n

∑

m ∈ Mε∩{1,...,n}
am + 1

n

∑

m/∈Mε∩{1,...,n}
am

Letting A = supnan, one has:

ε

(
1 − |Mε ∩ {1, . . . , n}|

n

)
≤ 1

n

n∑

m=1

am ≤ ε +
(

1 − |Mε ∩ {1, . . . , n}|
n

)
A

From the left-hand side, if (1/n)
∑n

m=1am goes to zero, for each ε > 0, limn(1/n)|Mε ∩ {1, . . . , n}| = 1, and from the
right-hand side, if (an) goes to zero with density one, (1/n)

∑n
m=1am is less than 2ε for n large enough. !

We define a notion of merging in terms of expected average variational distance.

Definition 7. Q almost weakly merges on average (AWMA) to P if

lim
n

En(P, Q) = 0

AWMA amounts to the convergence of ēn(P, Q)(ω) to 0 in L1-norm or in P-probability and is weaker than P-almost
sure convergence. AWMA is however not much weaker than almost weak merging, since the following proposition
shows that if En(P, Q) does not go to 0 too slowly, then Q almost weakly merges to P.

Proposition 8. If En(P, Q) ≤ C/nα for C > 0 and α > 0, then ēn(P, Q)(ω) → 0, P-a.s.

This is a direct consequence of the following lemma.

Lemma 9. Let (xn) be a sequence of random variables with range in [0, 1] and let x̄n = (1/n)
∑n

m=1xm be the
arithmetic average. If Ex̄n ≤ C/nα for C > 0 and α > 0, then x̄n converges to 0 a.s.

Proof. Let p be an integer. We first prove that x̄np converges to 0 a.s. when pα > 1. It is enough to prove that for
every ε > 0,

∑
nP(x̄np > ε) < +∞. By the Markov inequality,

P(x̄np > ε) ≤ E(x̄np )
ε

≤ C

npαε

Now for each integer N, there exists a unique n s.t. np ≤ N < (n + 1)p. Then,

x̄N = np

N
x̄np + N − np

N
y

with y ∈ [0, 1]. Thus, x̄N ≤ x̄np +
(

1 + 1
n

)p
− 1. !

Example 10 (AWMA does not imply AWM). Let X = {0, 1} and construct P as follows. Take a family (yk)k≥0 of
independent random variables in X such that P(yk = 0) = (1/k + 1), and set x2k = yk. If yk = 0 then xt = 0 for
2k < t < 2k+1. If yk = 1 then (xt)2k<t<2k+1 are i.i.d. (1/2, 1/2) and independent of x1, . . . , x2k−1.

The belief Q is the distribution of an i.i.d. sequence of random variables (1/2, 1/2), so qt := Q(xt = 0|ωt−1) = 1/2
for every t and ωt−1.

We now compute pt := P(xt = 0|ωt−1) and et = 2|pt − qt|. For t = 2k, pt = (1/k + 1) and et = 1 − (2/k + 1).
For 2k < t < 2k+1, pt = 0 and et = 1 if yk = 0, pt = 1/2 and et = 0 if yk = 1.

On N− ∪k{2k}, EPet → 0 as t goes to +∞, and EPet ≤ 1 on ∪k{2k}. Therefore EP ēt → 0, and AWMA holds.
On the other hand, by Borel-Cantelli’s lemma, yk = 0 infinitely often with P-probability one. Whenever yk = 0,

ē2k+1−1 ≥ (2k+1 − 2k − 1/2k) = 1/2 − 1/2k. Hence, on a set of P-probability one, ēt does not converge to 0.
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Theorem 11.

(1) If (1/n)dn(P, Q)(ω) → 0, then Q almost weakly merges to P at ω.
(2) If (1/n)d(Pn‖Qn) → 0, then Q almost weakly merges on average to P and the speed of AWMA is

√
(1/n)d(Pn‖Qn).

In particular, if d(Pn‖Qn) is bounded, AWMA occurs at the speed 1/
√

n.
(3) If d(Pn‖Qn) ≤ Cnβ for C > 0 and β < 1, then ēn(P, Q)(ω) → 0, P-a.s., i.e. Q almost weakly merges to P.

Proof. Follows from Propositions 3, 4, and 8. !

Remark 12. The only condition in the literature under which a rate of convergence of merging is known is absolute
continuity, and convergence holds at a rate 1/

√
n in this case (see Sandroni and Smorodinsky, 1999). Note that condition

(2) does not imply nor is implied by absolute continuity. Indeed, although supnd(Pn‖Qn) < ∞ implies absolute
continuity, when supnd(Pn‖Qn) = ∞, absolute continuity may hold or fail for any rate of growth of d(Pn‖Qn).

Lehrer and Smorodinsky (1996) provide a sufficient condition for almost weak merging that generalizes absolute
continuity. They prove that if lim(1/n) ln(P(ωn)/Q(ωn)) = 0 P-a.s. then Q almost weakly merges to P. Both absolute
continuity and Lehrer and Smorodinsky’s condition are global on the set of paths. Property (1) gives a condition on
each ω for which almost weak merging at ω holds.

Example 13 (Grain of truth). An common assumption to models of reputation is grain of truth (see Sorin, 1999) :
P and Q verify the grain of truth assumption if there exists 0 < λ ≤ 1 and a probability measure P̃ such that Q =
λP + (1 − λ)P̃ . In this case, for each ω, (P(ωn)/Q(ωn)) ≤ 1/λ so that d(Pn‖Qn) ≤ −lnλ, and

En(P, Q) ≤
√

−ln λ√
2n

Hence, under the grain of truth assumption, we obtain an explicit bound on En(P, Q). Note that the speed of convergence
is 1/

√
n and that the constant

√
−ln λ/2 depends on λ only.

Example 14 (Uniform prior on the parameter of a coin). A coin is tossed infinitely often. Let X be {Heads, Tails}.
The true distribution P is the one of an i.i.d. sequence of tosses with parameter p ∈ [0, 1]. The agent believes that the
parameter of the coin is drawn from the uniform distribution and that the tosses are i.i.d. with the selected parameter.
Here, the true distribution is not absolutely continuous with respect to the belief: under P, the empirical frequency of
Heads converges to p almost surely, and this event has probability zero under Q. Yet, we can compute d(Pn‖Qn) and
evaluate the speed of AWMA.

Denoting by h the number of Heads in ωn,

P(ωn) = ph(1 − p)n−h

and

Q(ωn) =
∫ 1

0
th(1 − t)n−hdt = 1

(n + 1)

(
n

h

) .

Then,

d(Pn‖Qn) =
∑

ωn

P(ωn)ln
P(ωn)
Q(ωn)

=
n∑

h=0

(
n

h

)
ph(1 − p)n−hln

(
ph(1 − p)n−h(n + 1)

(
n

h

))

= ln(n + 1) +
n∑

h=0

(
n

h

)
ph(1 − p)n−hln

((
n

h

)
ph(1 − p)n−h

)

= ln(n + 1) − H(B(p, n)) ≤ ln(n + 1)
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where

H(B(p, n)) = −
n∑

h=0

(
n

h

)
ph(1 − p)n−hln

((
n

h

)
ph(1 − p)n−h

)

is the entropy of the binomial distribution. Thus, d(Pn‖Qn) is of order of magnitude logn and AWMA occurs at a
speed no slower than

√
ln n/n:

En(P, Q) ≤
√

ln(n + 1)
2n

Example 15 (Parametric estimation). The
√

ln n/n type of bound on En(P, Q) of the previous example also holds in
a general set-up. Consider a parameterized family of distributions {pθ, θ ∈Θ} on a measurable space, with Θ ⊂ Rd .
The true law P of the process is i.i.d. with stage law pθ0 , and the agent’s prior belief on θ has density w(θ) w.r.t. the
Lebesgue measure. Clarke and Barron (1990) present sufficient conditions under which

d(Pn‖Qn) = d

2
ln

n

2πe
+ 1

2
ln det I(θ0) + ln

1
w(θ0)

+ o(1)

where I(θ0) is the Fisher information matrix. A bound on En follows using Proposition 4.

5. Bound on the cost of learning

A decision problem is given by a compact space of actions A and a continuous payoff function π : A × X → R. We
let ‖π‖ = maxa,x|π(a, x)|. The agent chooses an action an ∈ A at each stage n knowing x1, . . . , xn−1 and receives a
payoff π(an, xn) at stage n if xn occurs. A strategy is a mapping f : ∪n≥0X

n → A, with X0 = {∅} by convention. A P-
optimal strategy is a strategy fP such that for each stage t and historyωt−1 = (x1, . . . , xt−1), the action fP,t := fP (ωt−1)
maximizes

∑
xP(x|ωt−1)π(x, a) over a ∈ A.

5.1. Cost of learning, merging and relative entropy

Assuming the probability distribution governing states of nature is P and the decision maker maximizes according
to a probability distribution Q, we define the cost of learning suffered by the decision maker in the n-stage decision
problem as the difference between the payoff yielded by the optimal strategy fP and the payoff yielded by the strategy
fQ actually played. Since there may exist several optimal strategies, we consider the worst case and define:

cn(P, Q)(ω) = max
fQ

n∑

t=1

1
n

EP [π(fP,t, xt) − π(fQ,t, xt)|ωt−1]

Cn(P, Q) = max
fQ

n∑

t=1

1
n

EP [π(fP,t, xt) − π(fQ,t, xt)]

where the maximum is taken over all Q-optimal strategies fQ. Notice that the expressions of cn and Cn do not depend
on the choice of a particular P-optimal strategy.

The following result provides rates of convergence for the cost of learning.

Theorem 16.

(1) 0 ≤ cn(P, Q)(ω) ≤ 4‖π‖ēn(P, Q)(ω) ≤ 2
√

2‖π‖
√

dn(P, Q)(ω)/n for all n and ω.
(2) 0 ≤ Cn(P, Q) ≤ 4‖π‖En(P, Q) ≤ 2

√
2‖π‖

√
d(Pn‖Qn)/n for all n.
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Proof.

(1) Take a P-optimal strategy fP and a Q-optimal strategy fQ. For each ωt−1, EP [π(fP,t, xt) − π(fQ,t, xt)|ωt−1] is
non-negative. Furthermore,

EP [π(fP,t, xt) − π(fQ,t, xt)|ωt−1] = EP [π(fP,t, xt)|ωt−1] − EQ[π(fP,t, xt)|ωt−1]

+ EQ[π(fP,t, xt)|ωt−1] − EQ[π(fQ,t, xt)|ωt−1]

+ EQ[π(fQ,t, xt)|ωt−1] − EP [π(fQ,t, xt)|ωt−1]

The second difference is non-positive since fQ is Q-optimal. The first and third differences are both bounded
by

‖π‖
∑

x

|P(x|ωt−1) − Q(x|ωt−1)| = 2‖π‖et(P, Q)(ω)

Thus,

EP [π(fP,t, xt) − π(fQ,t, xt)|ωt−1] ≤ 4‖π‖et(P, Q)(ω)

Averaging over time yields the desired inequality since the bound does not depend on the choice of the optimal
strategies.

(2) This follows directly from the previous point by taking expectation and by noticing that Cn(P, Q) = EP cn(P, Q).
Indeed, in the maximization problem defining Cn(P, Q), the optimal fQ should be such that fQ(ωt−1) maximizes
EP [π(fP,t, xt) − π(fQ,t, xt)|ωt−1], and thus be also optimal for cn(P, Q)(ω). !

Remark 17. Lehrer and Smorodinsky (2000) relate the limit log-likelihood ratio
limn − (1/n) ln(P(ωn)/Q(ωn)) with the asymptotic cost of learning at ω. Theorem 16 provides a bound on
the n-stage cost of learning for each n.

Remark 18. Theorem 16 provides a bound on expected payoffs and on conditional expected payoffs. We derive a
result on the stream of realized payoffs as follows. For each pair of optimal strategies (fP, fQ) define,

c′
n(fP, fQ)(ω) =

n∑

t=1

1
n

(π(fP,t, xt) − π(fQ,t, xt))

c
′′
n(fP, fQ)(ω) =

n∑

t=1

1
n

EP [π(fP,t, xt) − π(fQ,t, xt)|ωt−1]

The difference Xn := c′
n(fP, fQ) − c′′

n(fP, fQ) is an average of uncorrelated random variables and since payoffs are
bounded, from Bienaymé–Chebichev inequality, there exists a constant K depending on the payoff function only such
that for each ε > 0, P(Xn > ε) ≤ K/nε2. Since c′′

n(fP, fQ)(ω) ≤ cn(P, Q)(ω) we deduce from Theorem 16:

Claim 19. There exists a constant K such that for every P-optimal strategy fP , Q-optimal strategy fQ and ε > 0,

P

(
c′
n(fP, fQ)(ω) > 2

√
2‖π‖

√
dn(P, Q)(ω)

n
+ ε

)
≤ K

nε2
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5.2. Fast convergence in regular decision problems

We get a faster rate of convergence under regularity conditions on the decision problem.

Theorem 20. Assume v : p 1→ maxaEpπ(a, ·) is twice differentiable, and that ‖v′′‖ = maxp‖v′′(p)‖ is finite. Then:

(1) cn(P, Q)(ω) ≤ (‖v′′‖/4)(dn(P, Q)(ω)/n) for all n and ω.
(2) Cn(P, Q) ≤ (‖v′′‖/4)(d(Pn‖Qn)/n) for all n.

Proof. Fix a P-optimal strategy fP , a Q-optimal strategy fQ, a history ωt−1 and set p = P(·|ωt−1), q = Q(·|ωt−1),
a = fP (ωt−1) and b = fQ(ωt−1). Then,

EP [π(fP,t, xt)−π(fQ,t, xt)|ωt−1] = v(p)−Epπ(b, ·) = v(p) − v(q)−(Epπ(b, ·)−Eqπ(b, ·))

The mapping p 1→ Epπ(a, ·) is linear, so its derivative with respect to p does not depend on p and we denote it πa.
From the envelope theorem, v′(p) = πa and v′(q) = πb. Thus,

v(p) − Epπ(b, ·) = v(p) − v(q) − (p − q)v′(q)

Since v is twice differentiable with second derivative bounded by ‖v′′‖,

v(p) − Epπ(b, ·) ≤ 1
2‖v′′‖‖p − q‖2

From Pinsker’s inequality, ‖p − q‖2 ≤ (1/2)d(p‖q). Thus,

EP [π(fP,t, xt) − π(fQ,t, xt)|ωt−1] ≤ 1
2‖v′′‖(et(P, Q)(ω))2 ≤ 1

4‖v′′‖d(p‖q)

The proof is concluded as for Theorem 16. !

Example 21. Consider a quadratic model where A = [0, 1], X = {0, 1} and π(a, x) = −(x − a)2. Then,

v(p) = max
a

{−pa2 − (1 − p)(1 − a)2} = −p(1 − p)

From Theorem 20, cn(P, Q)(ω) ≤ dnP, Qω/(2n) and CnP, Q) ≤ dPn‖Qn/(2n).

Example 22. If the differentiability condition fails, the per-stage cost of learning might not be proportional to the
square of the variational distance but to the variational distance itself, thus leading to a slower convergence rate.

Consider a “matching pennies” problem: A = X = {0, 1} and the decision maker has to predict nature’s move,
π(a, x) = 1{a=x}. Assume that the belief at some stage is q = 1/2 and that p = 1/2 − ε (p and q are identified with
the probability they put on 0). Let b = 0 be the action corresponding to a belief > 1/2. Then

v(p) − Epπ(b, ·) = (1 − p) − p = 2ε = 2(q − p)

In this example, q is at a kink of the map v, therefore at a point where the “marginal value of information” is maximal.

5.3. The discounted case

Now we extend Theorems 16 and 20 to discounted problems. We define the cost of learning suffered by the decision
maker in the δ-discounted decision problem (0 < δ< 1) as:

Cδ(P, Q) = max
fQ

∞∑

t=1

(1 − δ)δt−1EP [π(fP,t, xt) − π(fQ,t, xt)]

where fP is any P-optimal strategy and the maximum is taken over all Q-optimal strategies fQ. Note that Cδ(P, Q) is
always non negative.



32 O. Gossner, T. Tomala / Journal of Mathematical Economics 44 (2008) 24–32

Proposition 23. If d(P, Q) = supndn(P‖Q) < ∞, then:

(1) Cδ(P, Q) ≤ 2
√

2‖π‖
√

d(P‖Q)
√

(1 − δ).
(2) If v : p 1→ maxaEpπ(a, ·) is twice differentiable and ‖v′′‖ = maxp‖v′′(p)‖ < ∞, then Cδ(P, Q) ≤

(‖v′′‖/4)d(P‖Q)(1 − δ).

In particular, sufficiently patient agents suffer arbitrarily small costs of learning. More precisely, the cost is less than
ε if δ ≥ 1 − (ε2/(8‖π‖2d(P‖Q))).

Proof.

(1) The discounted average of a sequence is a convex combination of the finite stage arithmetic averages: Cδ(P, Q) =∑
m(1 − δ)2δm−1mCm(P, Q). Then using Theorem 16,

Cδ(P, Q) ≤ 2
√

2‖π‖
√

d(P‖Q)(1 − δ)
∑

m

(1 − δ)δm−1√m

Jensen’s inequality and the concavity of the square root function imply
∑

m(1 − δ)δm−1√m ≤ 1/
√

1 − δ and the
result follows.

(2) Follows from the same lines, using Theorem 20. !
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