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OPTIMAL USE OF COMMUNICATION RESOURCES

BY OLIVIER GOSSNER, PENÉLOPE HERNÁNDEZ, AND ABRAHAM NEYMAN1

We study a repeated game with asymmetric information about a dynamic state of
nature. In the course of the game, the better-informed player can communicate some
or all of his information to the other. Our model covers costly and/or bounded com-
munication. We characterize the set of equilibrium payoffs and contrast these with the
communication equilibrium payoffs, which by definition entail no communication costs.

KEYWORDS: Communication, information economics, incomplete information, en-
tropy, information processing.

1. INTRODUCTION

COMMUNICATION ACTIVITIES may resolve inefficiencies due to information
asymmetries between agents, but are themselves costly, e.g., due to sending
and processing costs. The study of optimal trade-offs between the costs and
the benefits of communication is to a large extent an open problem and is the
topic of this paper.

Communication equilibria, as proposed by Forges (1986) and Myerson
(1986), extend the rules of a game by adding communication possibilities
through arbitrary mechanisms at any stage of a multistage game. This concept
captures the largest set of implementable equilibria when no restriction exists
on the means of communication between the players.

On the other hand, economic studies like Radner (1993) tell us that in an
organization like a firm, communication is a costly activity and that a significant
amount of resources is devoted to processing and sending information. In these
structures, the constant need for information updating entails important costs.

Starting with Forges (1990) and Bárány (1992), a body of literature, includ-
ing Urbano and Vila (2002), Ben-Porath (2003), and Gerardi (2004), studies
models of decentralized communication. An important conclusion of this liter-
ature is that—under various assumptions—all communication equilibria can
be implemented through preplay decentralized communication procedures.
Hence, decentralized communication schemes can be used without any loss
of efficiency if we consider that a finite number of communication stages en-
tails negligible costs compared to the payoffs of the game to be played. Because
the costs of communication cannot be explained by considering decentralized
communication schemes as opposed to centralized ones, another archetype of
costly communication is needed to study the trade-off between the costs and
benefits of information transmission.

1This research was supported in part by Israel Science Foundation Grants 382/98 and 263/03,
and by the Zvi Hermann Shapira Research Fund. The second author is grateful for financial
support from the Spanish Ministry of Education under project SEJ 2004-02172/ECON and the
Instituto Valenciano de Investigaciones Económicas (Ivie).
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This paper puts the emphasis on this need for information updating, and
studies the communication dynamics in a model where the states of nature
evolve through time. One player—the forecaster—has better information than
the other player—the agent—about the stream of states of nature. The fore-
caster may choose to send messages and take actions at any stage, and both
components are described as part of the action set of the forecaster.

The payoffs associated to action choices and the limited action set of the
forecaster model the costs associated to, and the limitations on, both informa-
tion processing by the agent and the forecaster and information transmission
(e.g., through physical or electronic means).

A repeated game takes place between the forecaster, the agent, and nature.
The agent’s actions at any stage may depend on all past actions and on all past
states of nature. The forecaster’s actions may depend on all past actions and
on all past states of nature, but also on all future states of nature. Hence, the
forecaster’s actions include a payoff component (because these actions impact
players’ payoffs) and an information component (because these actions may
inform the agent about future states of nature). At each stage, the agent up-
dates his information using his observation both of the current state of nature
and of the forecaster’s action.

A specification of players’ strategies induces a joint dynamic on the triple
(state of nature, forecaster’s action, agent’s action), called the action triple. We
study this dynamic through the average distribution Q of this action triple. This
distribution contains all expected time average statistics of action triples and is
important for strategic purposes because all expected average payoffs depend
on players’ strategies through it only.

We characterize the set of distributions Q that are implementable by strate-
gies of the forecaster and the agent. The fact that the information used by
the agent cannot exceed the information received leads to an information-
theoretic inequality expressed using the Shannon (1948) entropy function,
which we call the information constraint.

On the one hand, we prove that for all strategies of the forecaster and the
agent and for any n, the average distribution during the first n stages fulfills the
information constraint. On the other hand, we prove that for any distribution Q
that fulfills the information constraint, there exists a pair of pure strategies
for the forecaster and the agent such that the long-run average distribution of
action triples is Q. Hence, the information constraint fully characterizes the set
of implementable distributions.

This result has many implications on the optimal use of communication re-
sources, in both team games and general games.

The cost of communication inefficiencies can be measured in team games,
where the (unique) Pareto payoff for the team is the natural solution concept.
In the communication equilibrium extension of our model, this Pareto pay-
off corresponds to the first-best payoff in which both players are perfectly in-
formed of the state of nature at each stage. In our game, the Pareto payoff



COMMUNICATION RESOURCES 1605

is, in general, strictly less than this first-best payoff and represents a second-
best payoff that takes into account the implementation costs of communication
processes. Our analysis allows us to compute the optimal payoff and to design
optimal strategies for the team that take into account the communication costs
and limitations.

In general games, we characterize the set of equilibrium payoffs when play-
ers are sufficiently patient. This set is a subset of the set of extensive-form
communication equilibrium payoffs, which assume costless and unbounded
communication, and it is a superset of the set of “silent” equilibrium payoffs in
which no information is transmitted from the forecaster to the agent.

Section 2 presents the model and defines and presents elementary prop-
erties of implementable distributions. Section 3 introduces the information
constraint and the main results. In Section 4 we show that using mixed or cor-
related strategies (instead of pure strategies) does not change the analysis. The
main results are proved in Sections 5 and 7. Section 6 presents a formulation
of the information constraint in terms of relative sizes of sets, which is a funda-
mental tool in the construction of optimal communication schemes. Section 8
presents applications to team games and to general games, and we conclude
with a discussion and extensions in Section 9.

2. THE MODEL

We present here the basic version of our model. Most of its assumptions are
relaxed in Section 9.

Given a finite set A, ∆(A) represents the set of probability measures over
A and |A| is the cardinality of A. Random variables are denoted by bold let-
ters.

The finite set of states of nature is denoted by I. There are two players: the
forecaster, with finite action set J, and the agent, with finite action set K. The
stage payoff functions are gf � ga : I × J ×K → R for the forecaster and for the
agent, respectively, and g = (gf � ga). We assume |J| ≥ 2 so that possibilities of
communication from the forecaster to the agent exist.

In the repeated game, the forecaster is informed beforehand of future states
of nature. At each stage, the chosen action may depend on past actions, as well
as on the sequence of states of nature. A (pure) strategy for the forecaster is
thus a sequence (σt)t of mappings σt : IN × Jt−1 ×Kt−1 → J, where σt describes
the behavior at stage t.

The agent is informed of past realizations of nature and past actions only.
A (pure) strategy for the agent is thus a sequence (τt)t of mappings τt : It−1 ×
Jt−1 ×Kt−1 → K, where τt describes the behavior at stage t.

We assume that the sequence (it)t of states of nature is independent and
identically distributed of stage law µ. A pair of strategies (σ�τ) induces se-
quences of random variables (jt)t and (kt)t given by jt = σt((it′)t′� (j1� � � � � jt−1)�
(k1� � � � �kt−1)) and kt = τt((i1� � � � � it−1)� (j1� � � � � jt−1)� (k1� � � � �kt−1)). We de-
note the induced probability distribution over (I × J × K)N by Pµ�σ�τ, and the
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marginal over stage t’s action triple by Pt
µ�σ�τ. The average distribution up to

stage t is Qt
µ�σ�τ = 1

t

∑t

t′=1 P
t′
µ�σ�τ.

We say that a distribution Q ∈ ∆(I × J × K) is implementable (respectively,
t-implementable) when there exists a strategy pair (σ�τ) such that Qt

µ�σ�τ → Q
as t → ∞ (respectively, Qt

µ�σ�τ = Q) and in this case the strategy pair (σ�τ)
implements (respectively, t-implements) the distribution Q.

The set of implementable (respectively, t-implementable) distributions is de-
noted Q (respectively, Q(t)). Note the following elementary properties of im-
plementable distributions.

REMARK 1: (i) Q(t) is closed.2

(ii) Every Q ∈Q(t) is implementable.
(iii) s

s+t
Q(s)+ t

s+t
Q(t)⊆Q(s + t) and thus also Q(t)⊆Q(kt).

(iv) The Hausdorff distance between Q(s) and Q(s + t) is bounded by 2t
s+t

.

These elementary properties imply the following statements:

REMARK 2: (i) The limit of Q(t) as t → ∞ exists and equals the closed
convex hull of

⋃
t≥1 Q(t).

(ii) Q(t)→Q as t → ∞.
(iii) Q is closed and convex.

Let Ft (respectively F) denote the set of feasible payoff vectors of the t-stage
game (respectively, of the infinitely repeated game). Note that Ft and F are the
linear images of Q(t) and Q under the expectation operator: v ∈ Ft if and only
if there is Q ∈ Q(t) such that v = EQg, and v ∈ F if and only if there is Q ∈ Q
such that v = EQg.

Interstage-time-dependent discount factors (λt)t≥1 lead to a weighted av-
erage valuation of a stream of payoffs (gt) given by

∑∞
t=1 θtgt , where θt =

(
∏

s<t λs)/(
∑∞

u=1

∏
s<u λs). Thus θ = (θt)t≥1 is a nonincreasing sequence with∑∞

t=1 θt = 1. The valuation in the commonly used λ-discounted game for some
0 < λ< 1 corresponds to the case where θt = (1 − λ)λt−1, and the valuation in
the T -stage finitely repeated game corresponds to the case where θt = 1

T
for

t ≤ T and θt = 0 for t > T .
Long games are characterized by values of θ1 close to 0. At any stage t,

θt is the weight of the current payoff, whereas
∑

t′>t θt is the weight of
the future stream of payoffs. Patient players are characterized by values of
supt(θt/

∑
t′>t θt) close to 0.

2Under the norm distance, ‖Q − Q′‖ = 2 maxX⊂I×J×K(Q(X) − Q′(X)) = ∑
(i�j�k)∈I×J×K |Q(i�

j�k)−Q′(i� j�k)|.
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We let Eθ denote the set of Nash equilibria of the game with payoffs eval-
uated according to the sequence θ = (θt)t . The key to characterize the limit
of Eθ when players are sufficiently patient (Proposition 5) is a characterization
via the set of implementable distributions of the set of feasible payoff vectors
(Corollary 1).

2.1. Example: Coordination with Nature

We consider a two-player team game in which both players wish to coordi-
nate with nature. I = J = K = {0�1} and µ is uniform. The common payoff
function to both players is given by

g(i� j�k)=
{

1� if i = j = k,
0� otherwise,

and can be represented by the payoff matrices

0 1

0 1 0

1 0 0

i = 0

0 1

0 0 0

1 0 1

i = 1

,

where nature chooses the matrix, the forecaster chooses the row, and the agent
chooses the column.

Consider the strategy of the forecaster that matches the state of nature at
every stage. This strategy conveys no information to the agent about future
states of nature. If the agent plays randomly, the average distribution D0 of
action triples up to any stage is in Q(1) and equals

0 1

0 1
4

1
4

1 0 0

i = 0

0 1

0 0 0

1 1
4

1
4

i = 1

.

The corresponding expected average payoff is 1
2 .

Now consider the strategy of the forecaster that matches nature at even
stages and plays the next state of nature at odd ones. At even stages, the agent
is informed of the state of nature by the previous action of the forecaster and
thus can match it. At odd stages, the agent has no information on the state of
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nature and we assume he plays randomly. The distribution of action triples at
odd stages is

0 1

0 1
8

1
8

1 1
8

1
8

i = 0

0 1

0 1
8

1
8

1 1
8

1
8

i = 1

and at even stages is

0 1

0 1
2 0

1 0 0

i = 0

0 1

0 0 0

1 0 1
2

i = 1

.

The long-run average distribution D1 is in Q(2) and equals

0 1

0 5
16

1
16

1 1
16

1
16

i = 0

0 1

0 1
16

1
16

1 1
16

5
16

i = 1

.

The corresponding expected payoff is 5
8 .

The previous strategies of the agent and the forecaster are defined over
blocks of two stages. Notice that they require the forecaster to know the states
of nature only two stages in advance.

Now we show an example of strategies that are defined over blocks of size
three. Let x[r] = (x1[r]�x2[r]�x3[r]) denote the sequence of states of nature in
the rth block. Similarly, y[r] and z[r] stand for the sequence of actions of the
forecaster and the agent in the rth block.

The agent’s actions in each block are either (0�0�0) or (1�1�1). We design
strategies such that in each block after the first, the agent’s actions match the
state of nature in a majority of stages.

The forecaster’s actions in a block signal to the agent the majoritarian state
of nature in the next block. This signaling is achieved by playing the majoritar-
ian state of nature of the block r + 1 in a singled-out stage of block r.

If the actions of the agent match the states of nature at all stages of block r
(x[r] = z[r]), then the third stage of the block is the one singled out. If the
actions of the agent match the sequence of states of nature in exactly two out
of three stages, the mismatched stage is the one singled out.
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The long-run average distribution D2 is, by elementary computation,

0 1

0 17
48

1
16

1 1
48

1
16

i = 0

0 1

0 1
16

1
48

1 1
16

17
48

i = 1

.

The payoff obtained with D2 is 17
24 , which is greater than the payoff 5

8 obtained
with D1. Notice that these strategies require the forecaster to know the states
of nature six stages in advance only, and do not rely on the agent observing the
states of nature.

Natural questions that arise are what are the implementable distributions
that maximize the expected payoff and what are the strategies that implement
these distributions.

Using our characterization of the set of implementable distributions, we
show in Section 3.1 that the distribution D3,

0 1
0 0.41 0.03
1 0.03 0.03

i = 0

0 1
0 0.03 0.03
1 0.03 0.41

i = 1

(with corresponding payoff 0�82), is not implementable, whereas the distribu-
tion D4,

0 1

0 2
5

1
30

1 1
30

1
30

i = 0

0 1

0 1
30

1
30

1 1
30

2
5

i = 1

(with corresponding payoff 4
5 ), is implementable.

Moreover, our analysis enables us to compute the (unique) implementable
distribution that maximizes the corresponding payoff and to construct strate-
gies that implement this distribution. The unique payoff-maximizing imple-
mentable distribution is

0 1

0 x
2

1−x
6

1 1−x
6

1−x
6

i = 0

0 1

0 1−x
6

1−x
6

1 1−x
6

x
2

i = 1
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with x satisfying H(x) + (1 − x) log2 3 = 1, where H is the entropy function.3
The corresponding payoff is x, which is approximately 0�81.

3. THE INFORMATION CONSTRAINT

The entropy of a discrete random variable x of law p with values in X mea-
sures its randomness and also the quantity of information given by its observa-
tion. Its value is

H(x)= −
∑
x∈X

p(x = x) logp(x = x)�

where the logarithm is taken in basis 2 and 0 log 0 = 0 by convention.
If x� y is a pair of discrete random variables of joint law p and with values

in X × Y , the entropy of x given y measures the randomness of x given the
knowledge of y or, equivalently, the quantity of information yielded by the
observation of x to an agent who knows y. Its value is

H(x|y) = −
∑

x�y∈X×Y

p(x = x� y = y) logp(x = x|y = y)

= −
∑
y∈Y

p(y = y)
∑
x∈X

p(x = x|y = y) logp(x = x|y = y)�

When we need to specify explicitly the probability Q of the probability space
under which the random variables x and y are defined, we shall use the notation
HQ(x) and HQ(x|y).

The main property of additivity of entropies states that

H(x� y)=H(x|y)+H(y)�

Let Q be a distribution over I × J×K. We say that Q fulfills the information
constraint when

HQ(i� j|k) ≥HQ(i)�(1)

Using the additivity of entropies, the information constraint can be rewritten
as

HQ(j|i�k) ≥HQ(i)−HQ(i|k)�(2)

The left-hand side of this inequality can be interpreted as the amount of
information received by the agent who observes the forecaster’s action j, given

3The entropy function H is given by H(x) = −x log2 x− (1 − x) log2(1 − x) for 0 < x< 1.
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the observation of the state of nature i and his own action k. It is then an
amount of information sent by the forecaster to the agent.

The right-hand side of (2) is the difference between the randomness of i
and the randomness of i given the knowledge of k. It is thus the reduction of
uncertainty that k gives on i, or the amount of information yielded by i on k.
We interpret it as an amount of information used by the agent on the state of
nature.

Following this interpretation, the information constraint expresses the fact
that the information used by the agent cannot exceed the information received
from the forecaster.

Other expressions of the information constraint, such as HQ(j�k|i) ≥ HQ(k)
or HQ(i� j�k) ≥ HQ(i) + HQ(k), are also useful and yield other relevant inter-
pretations in terms of information transmission and information banking.

THEOREM 1: Every implementable distribution fulfills the information con-
straint. In particular, every t-implementable distribution fulfills the information
constraint.

The next result shows a converse of the previous theorem when the horizon
of the game is large.

THEOREM 2: Any distribution that fulfills the information constraint and has
marginal µ on I is implementable.

Together, Theorems 1 and 2 show that the information constraint fully char-
acterizes the set of implementable distributions. It also characterizes the set of
feasible payoff vectors as follows:

COROLLARY 1: A payoff vector v is feasible if and only if there exists a distrib-
ution Q that fulfills the information constraint and has marginal µ on I such that
v = EQg.

3.1. Example Continued

Consider the game of Section 2.1. For 0 < y < 1, the distribution Dy of action
triples is

0 1

0
y

2
1−y

6

1 1−y

6
1−y

6

i = 0

0 1

0 1−y

6
1−y

6

1 1−y

6
y

2

i = 1

.
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Conditional on the value 0 or 1 of k, the distributions of (i� j) are

0 1

0 y 1−y

3

1 1−y

3
1−y

3

k= 0

0 1

0 1−y

3
1−y

3

1 1−y

3
y

k= 1

.

Hence, HDy(i� j|k) =H(y)+ (1 − y) log 3.
The distribution D3 of the example corresponds to y = 0�82, and HD3(i� j|k) ∼

0�97 < 1. Hence D3 does not satisfy the information constraint and is not im-
plementable by Theorem 1.

The distribution D4 corresponds to y = 0�8, and HD4(i� j|k) ∼ 1�04 >
HD4(i) = 1. Hence D4 fulfills the information constraint and is implementable
by Theorem 2. Now we construct strategies that implement D4.

The value of the entropy function H(x), 0 < x < 1, is a good approxima-
tion of 1

n
log

(
n

xn

)
for large n. Hence, H(0�8) + 0�2 log 3 > H(i) = 1 implies(5n

n

)
3n > 25n for n sufficiently large and precise computation shows that this

holds for all n ≥ 17.
The left-hand side of this inequality,

(5n
n

)
3n, is the number of elements in

the set S(n) of all sequences of length 5n of the digits {1�2�3�4}, where ex-
actly 4n of the entries are 1. Define a 1–1 map τ from K5n = {0�1}5n into S(n).
Choose a positive integer m and consider m consecutive blocks of length 5n
each. Let x[r] denote the sequence of states of nature in the rth block, and
let y[r] and z[r] stand for the sequence of actions of the forecaster and the
agent in the rth block. Define inductively z[m] = x[m] = y[m]. Assume that
z[r + 1] is defined for 1 < r < m and define (y[r]� z[r]) as a function of x[r]
and z[r + 1] as follows: yt[r] = zt[r] = xt[r] if the tth coordinate of τ(z[r + 1])
is 1, yt[r] �= zt[r] = 0 if the tth coordinate of τ(z[r + 1]) is 2, yt[r] �= zt[r] = 1 if
the tth coordinate of τ(z[r + 1]) is 3, and yt[r] = zt[r] �= xt[r] if the tth coordi-
nate of τ(z[r + 1]) is 4.

If we set in addition y[1] = z[2] and z[1] arbitrarily, we realize that for
1 ≤ r ≤ m the sequence z[r] is a deterministic function of (x[r − 1]� y[r − 1]�
z[r − 1]), and the sequence y[r] is a deterministic function of x[1]� � � � � x[m].
Therefore the random (because they depend on the sequence x[1]� � � � � x[m]
of states of nature) sequences z[1]� � � � � z[m] and y[1]� � � � � y[m] are imple-
mentable by pure strategies of the forecaster and the agent.

Note that for 1 < r <m we have |{1 ≤ t ≤ 5n :xt[r] = yt[r] = zt[r]}| = 4n and,
therefore, 4n(m + 1/2) ≥ |{1 ≤ t ≤ 5nm :xt = yt = zt}| ≥ 4n(m − 1), and thus
for sufficiently large m, the average payoff 1

5nm |{1 ≤ t ≤ 5nm :xt = yt = zt}| is
close to 0�8. In addition, Q(i = 0 = j �= k), Q(i = 0 = k �= j), etc., are close
to 1/30.
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4. MIXED AND CORRELATED STRATEGIES

The set of t-implementable distributions in pure or mixed strategies is not
convex whenever |K| ≥ 2, and its convex hull is the set of t-implementable
distributions in correlated strategies. However, the set of implementable dis-
tributions is closed and convex (Remark 2), and therefore also contains the
t-implementable distributions in correlated strategies and their limits. Thus,
t-implementable distributions using correlated strategies fulfill the informa-
tion constraint, and distributions that are implementable using correlated
strategies are also implementable using pure strategies.

The convexity and the closedness of the set of implementable distributions
also follow from Theorems 1 and 2 and from the following lemma, which is
useful in the sequel.

LEMMA 1: Given finite sets X and Y , the function Q �→ HQ(y|x) is concave
on the set of probability measures on X ×Y .

PROOF: The proof follows from the concavity of entropy. Let Q̄ = ∑
m λmQm

be a finite convex combination of distributions over X × Y . Consider a triple
of random variables α�β�γ such that P(γ = m) = λm and α�β has law Qm

conditional on γ =m. Then

HQ̄(y|x) = H(β|α)
≥ H(β|α�γ)
=

∑
m

λmHQm(y|x)�
Q.E.D.

5. PROOF OF THEOREM 1

For any pure strategies σ and τ, and any stage t,

t∑
t′=1

HPt′
µ�σ�τ

(i� j|k) =
t∑

t′=1

H(it � jt |kt)

=
t∑

t′=1

H(it � jt �kt |kt)

≥
t∑

t′=1

H(it � jt �kt |i1� j1�k1� � � � � it−1� jt−1�kt−1)

= H(i1� j1�k1� � � � � it � jt �kt)

≥ H(i1� � � � � it)= tH(µ)�
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where the first inequality follows from the fact that kt is a deterministic func-
tion of the past, kt = τt ◦ (i1� j1�k1� � � � � it−1� jt−1�kt−1); the second inequality fol-
lows from the fact that (i1� � � � � it) is a function of (i1� j1�k1� � � � � it−1� jt−1�kt−1).
By Lemma 1,

HQt
µ�σ�τ

(i� j|k) ≥ 1
t

t∑
t′=1

HPt′
µ�σ�τ

(i� j|k)�

Hence t-implementable distributions fulfill the information constraint. The re-
sult follows from the fact that the maps Q �→ HQ(i� j|k) and Q �→ HQ(i) are
continuous and, therefore, the set of distributions Q that obey the information
constraint is closed.

6. A COMBINATORIAL VIEW OF THE INFORMATION CONSTRAINT

The entropy of the uniform distribution on a finite set A is called the com-
binatorial entropy of A and is denoted H(A); it is the log to the base two of
the number of elements of A. An inequality between the combinatorial en-
tropy of two finite sets is thus an inequality between the number of elements of
the sets and vice versa. In this section we derive a fundamental inequality, (5),
that enables us to translate the information constraint, which is an inequality
of entropies, to an approximate inequality of combinatorial entropies.

Comparison of sizes of sets and, in particular, inequalities derived from (5),
play a fundamental role in the proof of Theorem 2. Indeed, if a set A is larger
than another set B, then by pointing to an element in A, the forecaster can sig-
nal to the agent which element of B to choose. In addition, the present section
introduces notations used in the proof of Theorem 2.

For a finite sequence β = (b1� � � � � bn) over a finite alphabet B, ρ(β) ∈ ∆(B)
denotes its empirical distribution (ρ(β)[b] = 1

n

∑n

t=1 Ibt=b) and for ν ∈ ∆(B),
Tn(ν) denotes the n-type set of ν, {β ∈ Bn :ρ(β) = ν}. The set of types is
Tn(B)= {µ ∈ ∆(B)�Tn(µ) �= ∅}.

The entropy function provides a good approximation of the combinatorial
entropy of a nonempty typical set Tn(ν) (see, for instance, Cover and Thomas
(1991, Theorem 12.1.3, p. 282)). If ν ∈ ∆(B) and Tn(ν) �= ∅, then

2nH(ν)

(n+ 1)|B| ≤ |Tn(ν)| ≤ 2nH(ν)�(3)

If ν ∈ ∆(A × B) has marginals νA ∈ ∆(A) on A and νB on B, and α =
(a1� � � � � an) ∈ Tn(νA), the n-type set of ν conditional on α, denoted Tn(ν|α),
is the set of elements in Tn(ν) whose A-coordinates coincide with α; equiv-
alently, Tn(ν|α) is identified with {β ∈ Tn(νB) : (α�β) ∈ Tn(ν)}, where for β =
(b1� � � � � bn), (α�β) := (a1� b1� � � � � an� bn). The number of elements of Tn(ν|α)
is independent of α ∈ Tn(νA) and |Tn(ν|α)||Tn(να)| = |Tn(ν)|; equivalently,
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H(Tn(ν|α))+H(Tn(να))=H(Tn(ν)). The last equality is termed the additivity
of combinatorial entropies.

The conditional entropy Hν(b|a) = H(ν) − H(νA) (where ν ∈ Tn(A × B))
provides a good approximation of the combinatorial entropy of the typical
set Tn(ν|α). If ν ∈ Tn(A×B) and α ∈ Tn(νA), using the additivity of combina-
torial entropies, inequality (3) implies that (n+ 1)|A|2n(H(ν)−H(νA)) ≥ |Tn(ν|α)| ≥
2n(H(ν)−H(νA))

(n+1)|A×B| . Using Lemma 2 (in the Appendix), we have the tighter inequality

2n(H(ν)−H(νA)) ≥ |Tn(ν|α)| ≥ 2n(H(ν)−H(νA))

( n
|A| + 1)|A×B| �(4)

Let Q ∈ Tn(I × J ×K), ε = εQ = HQ(i� j|k)−HQ(i), and set q(n) = n|I×J×K|.
The inequalities (3) and (4) imply (assuming n� |I| > 1) that for x ∈ Tn(QI),

we have4

q(n)2εn ≥ |Tn(Q|x)|
|Tn(QK)| ≥ 2εn

q(n)
�(5)

Now we apply the inequality (5) to rewrite the information constraint as
an approximate inequality of combinatorial entropies. Note that if Q ∈ ∆(I ×
J × K), then Q need not be in Tn(I × J × K). However, for every Q ∈ ∆(I ×
J×K) there is R ∈ Tn(I × J×K) with ‖Q−R‖ < 2|I × J×K|/n. Let Q �→ Qn

be a map from ∆(I × J ×K) into Tn(I × J ×K) with ‖Q−Qn‖ ≤ C/n, where
C ≥ 2|I × J ×K| is a given constant.

PROPOSITION 1—The Combinatorial Information Constraint: The following
conditions on a distribution Q ∈ ∆(I×J×K) are equivalent:

(i) Q fulfills the information constraint.
(ii) There exists B ∈ R such that for x ∈ Tn(Q

n
I ), we have

H(Tn(Q
n|x)) ≥H(Tn(Q

n
K))+B log2 n�(6)

(iii) There exists B ∈ R such that for (x� z) ∈ Tn(Q
n
I×K), we have

H(Tn(Q
n|x�z))≥H(Tn(Q

n
I ))−H(Tn(Q

n
I×K|z))+B log2 n�

PROOF: We first prove that (i) and (ii) are equivalent. Assume that Q ful-
fills the information constraint. Thus HQ(i� j|k) ≥HQ(k). The inequality ‖Q−
Qn‖ ≤ C/n ≤ 1/2 implies that |HQ(k) − HQn(k)| ≤ 2C logn

n
(for n ≥ |I × J ×

4In fact, the right-hand inequality holds for q(n) ≥ ( n+|I|
|I×J×K| )

|I×J×K| and the left-hand inequality
holds for q(n) ≥ (n+ 1)|K| and thus, in particular, the inequalities hold for q(n) ≥ n|I×J×K|.
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K|) and |HQ(j�k|i) − HQn(j�k|i)| ≤ 4C logn
n

. Therefore, HQ(j�k|i) ≥ HQ(k) im-
plies that HQn(j�k|i) ≥ HQn(k) − 6C logn

n
and thus, by using inequality (5), for

x ∈ Tn(Q
n
I ), we have

H(Tn(Q
n|x)) ≥H(Tn(Q

n
K))− 6C log2 n− log2 q(n)

and thus (6) holds with B = −6C − |I × J ×K|.
If Q violates the information constraint, then HQ(i� j|k)−HQ(k) < 0. There-

fore, there is δ > 0 such that for sufficiently large n we have HQn(i� j|k) ≤
HQn(k)− δ and thus, by using inequality (5), for x ∈ Tn(Q

n
I ) and n sufficiently

large we have H(Tn(Q
n|x))≤ H(Tn(Q

n
K))−δn+ log2 q(n). Therefore, there is

no B ∈ R for which inequality (6) holds for all n.
From the additivity of entropies, inequality (6) is equivalent to the inequality

in condition (iii). Q.E.D.

Now we derive consequences of inequality (5) that are used in the proof of
Theorem 2. Let Q ∈ Tn(I × J ×K) and ε = εQ =HQ(i� j|k)−HQ(i).

Inequality (5) implies that if ε > 0 and n is sufficiently large so that
2εn > q(n), then

|Tn(Q|x)| > |Tn(QK)| for x ∈ Tn(QI);(7)

equivalently, |Tn(Q|x) ∩ (Jn × Tn(QK))| > |Tn(QK)|. As shown in Section 7.1,
for sufficiently large values5 of n, the set Tn(QK) is one of many subsets A
of Tn(QK) with

∀x ∈ Tn(QI)� |Tn(Q|x)∩ (Jn ×A)|> |A|�(8)

The two terms that appear in inequality (8) have relevant interpretations for
the online communication problem between the forecaster and the agent. The
intersection Tn(Q|x)∩ (Jn ×A) is the set of points (y� z) ∈ (J×K)n with z ∈A
and (x� y� z) ∈ Tn(Q). Given x ∈ Tn(QI), Tn(Q|x)∩(Jn×A) can be interpreted
as a set of messages (y� z) ∈ (J × K)n subject to z ∈ A and (x� y� z) ∈ Tn(Q).
The set A can be interpreted as a target set of action strings of length n of the
agent.

Therefore, given x ∈ Tn(QI), there is a 1–1 map η from A into Tn(Q|x) ∩
(Jn × A) (equivalently, a map η−1 from Tn(Q|x) ∩ (Jn × A) onto A), and a
point in η(A) can be interpreted as a message for the selection of an element
of A.

7. PROOF OF THEOREM 2

Fix Q′ ∈ ∆(I × J × K) that satisfies the conditions of Theorem 2. By Re-
mark 2, the set of implementable distributions is closed and by Remark 1, it

5More precisely, 2εn > q(n) is sufficient.
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contains Q(t). Therefore, it suffices to prove that for every ε > 0 there exists a
strategy profile (σ�τ) and t = t(ε�σ�τ) such that

‖Qt
µ�σ�τ −Q′‖< ε�

Fix ε > 0. By Lemma 4 (in the Appendix) there is Q ∈ ∆(I × J × K) such
that Tn(Q) �= ∅,

‖Q−Q′‖ < 7ε and thus in particular ‖QI −µ‖ < 7ε�(9)

and

HQ(i� j|k)−HQ(i) ≥ ε�(10)

Let n > |I|2/ε3 be a fixed sufficiently large integer; e.g., 2εn > n|I×J×K|(2 +
2n ln |I|) suffices. The proof associates (given n and Q specified previously)
to each sequence x = (x1�x2� � � �) of states of nature two sequences y =
(y1� y2� � � �) and z = (z1� z2� � � �) of forecaster’s actions and agent’s actions, re-
spectively.

The stages are partitioned into consecutive blocks: the first block is of length
n1 ≥ n log |K| (≥ nH(QK)), where n1 is a multiple of n, and the other blocks
are of length n. Set n0 = 0 and nr = n1 + (r − 1)n for r ≥ 1. We construct the
sequences y and z as follows. Denote by (x[r]� y[r]� z[r]) = (xt[r]� yt[r]� zt[r])t
(where 1 ≤ t ≤ n1 for r = 1 and 1 ≤ t ≤ n for r > 1) the action triples in the
rth block (i.e., in stages nr−1 < s ≤ nr).

We choose for every x ∈ In̄, where n̄ is either n1 or n, an element x̃ ∈ Tn̄(QI)
that minimizes the number of coordinates 1 ≤ t ≤ n̄ with xt �= x̃t subject to
ρ(x̃1� � � � � x̃n)=QI .

Let A ⊂ Tn(QK) satisfy (8). Then, for every x̃ ∈ Tn(QI), there is a 1–1
map fx̃ from A into the set of all pairs (y� z) ∈ Tn(Q|x̃) ∩ (Jn × A). As
|A| ≤ |Tn(QK)| ≤ 2n1 , there is a 1–1 map f0 from A into Jn1 .

Thus, by backward induction, starting at r = m, there are sequences y[r],
z[r], 1 < r ≤ m, such that (i) (x̃[r]� y[r]� z[r]) ∈ Tn(Q) for 1 < r ≤ m, (ii) z[r] ∈
A for 1 < r ≤m, (iii) fx̃[r](z[r + 1])= (y[r]� z[r]) for 1 < r <m, and (iv) y[1] =
f0(z[2]) and z[1] is an arbitrary element of Kn1 .

Conditions (iii) and (iv) imply the existence of a pure strategy pair (σ�τ)
of the forecaster and the agent that generate the action sequences y =
y[1]� y[2]� � � � � y[m] and z = z[1]� z[2]� � � � � z[m] as a function of the sequence x
of states of nature. Explicitly, define a pure strategy pair (σ�τ) of the fore-
caster and the agent as follows: The agent plays in the first block the se-
quence z[1]; in the second block he plays the sequence f−1

0 (y[1]) (conditional
on y[1] ∈ f0(A)); in the (r + 1)th block, 2 ≤ r < m, the agent plays the
sequence f−1

x̃[r](y[r]� z[r]). The forecaster plays in the mth block a sequence
y[m] ∈ Tn(Q|x̃[m]� z[m]); in the rth block, 1 < r <m, the forecaster plays the
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Jnth component of the sequence fx̃[r](z[r + 1]), and in the first block the fore-
caster plays the sequence f0(z[2]).

Let Qnm
µ (respectively, Q̃nm

µ ) be the expectation of the empirical distribution
of the triples (xt� yt� zt) (respectively, (x̃t� yt� zt)), where 1 ≤ t ≤ nm and x =
(x1�x2� � � �) is an independent and identically distributed sequence with xt ∼ µ.
Now we prove that condition (i) above implies that for sufficiently large m we
have ‖Qnm

µ −Q′‖ < 26ε.
For 1 < r ≤ m, the norm distance between the empirical distribution of

(x̃[r]� y[r]� z[r]) and (x[r]� y[r]� z[r]) is (obviously less than or equal to 2
and) bounded by 2

n

∑n

s=1 Ix̃s[r]�=xs[r]. By Corollary 2 (in the Appendix) the
probability that

∑n

s=1 Ix̃s[r]�=xs[r] ≥ 8εn is ≤ |I|2/(nε2), which is less than or
equal to ε (because n > |I|2/ε3). Therefore, ‖Qnm

µ − Q̃nm
µ ‖ < (16 + 2)ε =

18ε for sufficiently large m. If ρ(x̃[r]� y[r]� z[r]) = Q for every 1 < r ≤ m,
then for sufficiently large m we have ‖Q̃nm

µ − Q‖ < ε and, therefore, by
the triangle inequality, we conclude that for sufficiently large m we have
‖Qnm

µ −Q′‖< (18 + 1 + 7)ε = 26ε.
This ends the proof of Theorem 2.
We end this section with a discussion on the construction of the strategies of

the proof.

7.1. Choice of the Action Plan

The proof of Theorem 2 relies on a set A of action plans for the forecaster
(e.g., Tn(QK)) that satisfies inequality (8).

Let g(n) = 2 + 2n ln |I| and 1 ≤ fn ≤ |Tn(QI×K)|/|Tn(QI)|. Then
fn(g(n)− 1)2/(2g(n)) > nH(QI) ln 2 and, by Lemma 3 (in the Appendix),
there is a subset A of Tn(QK) with

|Tn(QK)| · |Tn(QI)|
|Tn(QI×K)| fng(n) ≤ |A|< 1 + |Tn(QK)| · |Tn(QI)|

|Tn(QI×K)| fng(n)

such that6 for every x ∈ Tn(QI) there are at least fn elements z ∈ A such that
(x� z) ∈ Tn(QI×K), i.e., |Tn(QI×K|x) ∩ A| ≥ fn. Thus, for every x ∈ Tn(QI) we
have |Tn(Q|x) ∩ (Jn × A)| ≥ fn|Tn(Q)|/|Tn(QI×K)|, which by inequality (5) is
no less than

fn
|Tn(QK)|

|Tn(QI×K|x)|
2εn

q(n)
�

Therefore, if ε > 0 and n is sufficiently large so that 2εn > q(n)g(n), then
A obeys (8).

6Actually, for fn > 1, smaller functions g(n) suffice.
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The combinatorial entropy of A is

H(A) = log2 fn +H(Tn(QK))+H(Tn(QI))−H(Tn(QI×K))

+O(logn)�

Hence, the construction of the proof can be implemented using sets of action
plans with combinatorial entropies that equal cn + O(logn), where c is any
value between HQ(k)+HQ(i)−HQ(i�k) and HQ(k).

It is worthwhile to note that the implementable strategies described above
require a perfect forecast of n+ n1 stages when fn = 1 and n1 − n+ nm stages
when fn = |Tn(QI×K)|/|Tn(QI)|. Moreover, when fn = 1, the first block can be
replaced with a block of size n and thus a forecast of 2n stages is required. The
strategy that corresponds to the minimal value fn = 1 thus requires a smaller
forecast and, in addition, a smaller dictionary (a function fx from Tn(Q|x) ∩
(Jn × A) onto A) to specify the agent’s action in the forthcoming block as a
function of the sequence of action triples in the last block. As fn increases,
the size of the dictionary increases. However, at the other extreme, when fn =
|Tn(QI×K)|/|Tn(QI)| the set A is simply Tn(QK) and thus the construction of
the set A is made explicit.

An adequate choice of size for the set A may also prove useful in the study
of the rate of convergence of the set of t-implementable distributions or the
set of distributions implementable with finite forecasts to the full set of imple-
mentable distributions.

8. PAYOFFS AND EQUILIBRIA

In this section we show how, for sufficiently long games, the information con-
straint yields characterizations of (i) the set of feasible payoff vectors, (ii) the
best payoff a team can achieve, and (iii) the set of equilibrium payoffs when
players are sufficiently patient.

8.1. Feasible Payoffs

We show that the set F is a good approximation for the set of feasible payoffs
of the long games.

The approximation applies to general interstage-time-dependent discount-
ing, thus, in particular, to finite repetitions of the game as well as to interstage-
time-independent discounting.

For a nonincreasing sequence θ = (θt)t of nonnegative numbers that sum
to 1, let Qθ

µ�σ�τ = ∑∞
t=1 θtP

t
µ�σ�τ be the θ-weighted average distribution of action

triples. The expectation of the θ-weighted sum of the stage payoffs is

EPµ�σ�τ

∞∑
t=1

θtg(it� jt� kt)= EQθ
µ�σ�τ

g(i� j�k)�
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Because
∑∞

t=1 θtP
t
µ�σ�τ = ∑∞

t=1(θt −θt+1)tQ
t
µ�σ�τ and

∑∞
t=1(θt −θt+1)t = 1, Qθ

µ�σ�τ

is a convex combination of the family of distributions {Qt
µ�σ�τ}t≥1. Thus it obeys

the information constraint and has marginal µ on I. Therefore, if Σf and Σa

denote the sets of strategies of the forecaster and the agent, respectively, we
have

PROPOSITION 2: For every nonincreasing sequence θ = (θt) that sums to 1, the
set of θ-weighted feasible payoff vectors

Fθ =
{

EPµ�σ�τ

∞∑
t=1

θtg(it� jt� kt) : (σ�τ) ∈ Σf ×Σa

}

is a subset of F .

Recall that Ft is the set of feasible payoff vectors of the t-stage repeated
game and let Fλ denote the set of feasible payoff vectors of the λ-discounted
game. Special cases of the previous proposition are

Ft ⊆ F� Fλ ⊆ F�

On the other hand, if Q is implementable, there exists a strategy pair (σ�τ)
such that for every ε > 0 there exists N so that ‖Qn

µ�σ�τ − Q‖ < ε for every
n ≥ N . Therefore, if θ = (θt)t is a nonincreasing sequence that sums to 1,
then ‖Qθ

µ�σ�τ −Q‖ = ‖∑∞
t=1(θt − θt+1)t(Q

t
µ�σ�τ −Q)‖ ≤ 2Nθ1 + ε (by the trian-

gle inequality and using 0 ≤ ∑N

t=1(θt − θt+1)t = ∑N

t=1 θt − NθN+1 ≤ Nθ1) and,
therefore, for sufficiently small θ1, the distribution Qθ

µ�σ�τ is within 2ε of the
distribution Q. Therefore:

PROPOSITION 3: Fθ converges in the Hausdorff metric to F as θ1 goes to 0. In
particular, Fλ → F as λ→ 1 and Ft → F as T → ∞.

8.2. Team Games

Team games, in which players’ preferences are identical, form an adequate
setup for the study of inefficiencies due to information asymmetries and com-
munication costs. As shown, for instance, by Marschak and Radner (1972) and
by Arrow (1985), it is helpful to describe a firm as a team when one focuses on
the question of information transmission among its members.

In team games, our model allows us to measure the inefficiencies that arise
from the need to send and process information. As a benchmark, consider the
situation in which both the agent and the forecaster have complete information
about the states of nature. In this case, it is possible for both players to choose
optimally an action pair at each stage given the current state of nature. The
corresponding expected payoff is the best feasible under complete information.
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In the game we analyze, both players can use a myopic behavior that seeks
to maximize at each stage the payoff of the current stage. In this case, the fore-
caster’s actions are uninformative about the future of the process, and so the
agent’s belief on the current state of nature is his prior belief. Such behavior
rules are not optimal in general. Indeed, in most games the team can secure a
better payoff if the forecaster deviates from a myopic maximization rule so as
to convey information to the agent. For instance, in the game of Section 2.1,
myopic behaviors cannot secure more than 1

2 , whereas the nonmyopic strate-
gies that implement the distribution D1 guarantee 5

8 .
As we see, a good joint behavior for the forecaster must seek to commu-

nicate maximal information with the slightest deviation from a stage payoff
maximization rule.

The problems of finding optimal strategies for the team and of comput-
ing the maximal payoffs that can be achieved in a T -stage game or in a
λ-discounted game are difficult. Yet these problems are made particularly sim-
ple by considering long repeated games and using an approach through the
information constraint.

Let vθ be the maximum payoff for the team when the discount factors are
given by θ = (θt)t , i.e., vθ = max{x : (x�x) ∈ Fθ}, and let v = max{x : (x�x) ∈ F}.
Proposition 2 implies that vθ ≤ v and Proposition 3 implies

PROPOSITION 4: vθ goes to v when θ1 goes to 0. In particular, the maximal
payoffs that can be achieved in T -stage games and in λ-discounted games go to v
as λ goes to 1 and T goes to ∞.

We are thus able to characterize the best feasible payoff to the team and its
degree of inefficiency compared to the full information case, and to construct
strategies that achieve this maximal payoff.

Our model thus applies to the study of the impact of communication costs
on team games, which is an important question in the theory of organizations
(see van Zandt (1999) for a survey). The information constraint does not de-
pend on the specification of payoffs to the team. Because it characterizes the
set of implementable distributions, it allows us to write the maximization prob-
lem faced by the team in a simple and compact way for any payoff specifica-
tion.

8.2.1. Example: bounded communication

Consider the following team game where the state of nature specifies the
matrix, the forecaster is the row player, and the agent is the column player. The
sequence of states of nature follows an independent and identically distributed
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and uniform process. Payoffs are given by

1 2 3
1 1 0 0
2 1 0 0

1

1 2 3
1 0 1 0
2 0 1 0

2

1 2 3
1 0 0 1
2 0 0 1

3

�

Thus the payoff to the team depends only on the state of nature and on the
agent’s action. The forecaster has incentives to send the maximal information
to the agent.

Messages do not affect payoffs, but given µ and the size of J, it is not possi-
ble to send all the relevant information to the agent. A choice then needs to be
made about what information is to be sent, such that only the most important
information reaches the agent. This models cheap but bounded communica-
tion capacities. For instance, such a situation occurs when either the forecaster
or the agent is only capable of processing one binary message per stage.

We illustrate the use of the information constraint in computing the maxi-
mal payoff that the team of the forecaster and the agent can obtain. Let Q be
an implementable distribution that maximizes the common payoff; i.e., the dis-
tribution Q maximizes the probability Q(i = k) subject to HQ(i� j|k) ≥ HQ(i).
Obviously, by replacing the distribution Q with the product distribution of the
uniform distribution UJ on J and the marginal distribution QI×K , we obtain a
distribution Q̂ with Q̂(i = k) = Q(i = k) and HQ̂(i� j|k) ≥ HQ̂(i). Therefore,
we can assume without loss of generality that Q is the product distribution
UJ ⊗QI×K and thus the information constraint is

1 +HQ(i|k) ≥ HQ(i)= log 3�

i.e.,

HQ(i|k) ≥ log
3
2
�

Note that the common payoff depends only on the values of Q(i = k = 1),
Q(i = k = 2), and Q(i = k = 3), and equals their sum. By symmetry and by
concavity of the map Q �→ HQ(i|k) (Lemma 1), we can assume without loss
of generality that Q(i = k = 1) = Q(i = k = 2) = Q(i = k = 3) = x. Given
this inequality, the conditional entropy HQ(i|k) is maximized when Q(i = i|k =
k) = Q(i = i′|k = k) for i �= i′ �= k �= i, hence when Q(i = i|k = k) = ( 1

3 − x)/2
for i �= k. In this case, QI×K is given by

QI×K(i�k)=
{
x� if i = k,
1/3 − x

2
� if i �= k,
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and thus HQ(i|k) = H(3x) + 1 − 3x, which implies that the maximal payoff is
the solution v of the equation H(x)+ (1 − x) = log 3

2 .
Numerically, v ∼ 0�896. This has to be compared with the maximal payoff

of 1
3 when the agent is kept uninformed, and with the payoff of 1 when the

agent is fully informed.
It follows from the analysis in the next subsection that the set of equilibrium

payoffs of the repeated game when players are sufficiently patient goes to the
set {(y� y) : 1

3 ≤ y ≤ v} of all individual rational and feasible payoff vectors.

8.3. Games with Different Interests

Now we consider general payoff functions g = (gf � ga).
We compare the set of equilibrium payoffs of our model with the set of silent

equilibrium payoffs in which no information is transmitted and with the set of
communication equilibrium payoffs.

Call a strategy of the forecaster silent if it depends only on past play and
on the current state of nature (hence not on future states of nature). When
the forecaster uses silent strategies and the agent uses arbitrary strategies, the
induced set of feasible payoff vectors is the set of silent feasible payoff vectors
given by

FS = co
{
Eµg(i�α(i)�k)�α : I → J�k ∈ K

}
�

where co stands for the convex hull. At the other extreme, the set of feasible
payoff vectors in the extensive-form or normal-form communication extension
of the game is

FC = co
{
Eµg(i�α(i)�β(i))�α : I → J�β : I →K

}
�

Finally, define the set of feasible payoff vectors with internal communication
as F and recall that

F = {EQg(i� j�k) :Q verifies the information constraint and QI = µ}�
We have the obvious inclusions

FS ⊆ F ⊆ FC�

Because the set F is closed and convex (as the image of the closed and convex
set Q by the linear expectation operator), it is defined by its support function

x �→ max
y∈F

〈x� y〉� x ∈ R
2�

where 〈x� y〉 stands for the inner product of x and y . Given x ∈ R
2, the value

maxy∈F〈x� y〉 of the support function equals the maximal payoff that the team of
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the forecaster and the agent can achieve in the team game where the common
payoff function equals the inner product 〈x� (gf (i� j�k)�ga(i� j�k))〉. There-
fore, computing the feasible set F amounts to solving a family of (two-person)7

team games.
The individually rational level of a player is defined as the best payoff that

this player can defend using mixed strategies against every strategy of the other
player in long repetitions of the game. For the forecaster, this payoff is

vf = min
α∈∆(K)

max
β : I→J

Eµ�αg
f (i�β(i)�k)�

For the agent, this payoff is

va = max
α∈∆(K)

min
β : I→J

Eµ�αg
a(i�β(i)�k)�

The situation is asymmetric between the two players. Indeed, the forecaster
possesses a double advantage over the agent. First, he can use his private in-
formation concerning the states of nature to defend a better payoff against the
agent, which results in a higher individually rational level for the forecaster.
Second, he can use this information against the agent when punishing him,
which induces a lower individually rational payoff for the agent. Let IR be the
set of individually rational payoff vectors:

IR = {(xf �xa)�xf ≥ vf �xa ≥ va}�
The set FS ∩ IR corresponds to the set of equilibrium payoffs of games with

sufficiently patient players in which the forecaster uses silent strategies that
may depend on the current state of nature, but not on future ones. In these
equilibria, the agent is uninformed as to future states of nature.

The set FC ∩ IR is the set of communication equilibrium payoffs of the re-
peated game with sufficiently patient players. In this case, there are neither
restrictions nor costs associated with the communication possibilities.

Finally, F ∩ IR is the set of equilibrium payoffs of our original game when
players are sufficiently patient and all communication is internal to the game.
Formally:

PROPOSITION 5:

Eθ → F ∩ IR as sup
t

θt∑
s≥t θs

→ 0�

7In fact, as the implementing strategies in our proof are pure, it follows that solving a family
of two-person team games suffices for computing the feasible set of payoff vectors in the model
where there are several forecasters and several agents.
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In particular, the set of equilibria of the λ-discounted game goes to F ∩ IR
as λ goes to 1.

Note that all information concerning future states of nature that is sent by
the forecaster is eventually verifiable by the agent. Therefore, the proof of the
proposition is straightforward (and follows the classical lines of proofs) when
the set F ∩ IR contains a point that strictly dominates the individual rational
payoff vector.

Note that the limit set F ∩ IR is convex, but is in general not a polyhedron. It
is computed directly from the information constraint and reflects the costs of
communication among the players.

9. DISCUSSION AND EXTENSIONS

To preserve maximum transparency, we have tried to keep the basic model
of Section 2 as simple as possible. Notably, this has led to greatly simplified
assumptions on the forecasting ability, the signaling structure of the game, and
the distribution of the process. The aim of this section is to present various ex-
tensions and variations of the basic model, and to show how the analysis of im-
plementable distributions through the information constraint can be adapted
to these cases. We first discuss relaxations of the perfect and infinite forecast
assumption. Second, we examine the impact of the signaling structure of the
one-shot game on the set of implementable distributions. Third, we show how
autocorrelations of the process of states of nature can reduce the need for
information transmission and expand the set of implementable distributions.
Next, we illustrate that our main result is robust in the sense that small de-
viations from the main assumptions lead to a small change in the set of im-
plementable distributions. Finally, we discuss the possibilities of asymmetric
information on both sides as an open problem.

9.1. Limited Forecasting Abilities

The assumption of perfect and infinite forecast is relaxed in two ways. First,
we can assume that the forecaster is able to make predictions on states of na-
ture a finite number of stages in advance. Second, we introduce possibilities of
inaccurate predictions.

9.1.1. Finite forecasts

Say that the forecaster has f forecast if, before stage t, the forecaster is in-
formed of it� � � � � it+f−1. Note that any strategy that is implementable with f
forecast is implementable with perfect forecast. Note also that the strategies
constructed in the proof of Theorem 2 use f forecast for larger and larger
values of f . Hence, the set of implementable distributions with f forecast con-
verges, as f goes to ∞, to the implementable distributions of the basic model.
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9.1.2. Imperfect forecasts

Now we discuss the case where the forecaster is imperfectly informed of
the states of nature. Let S be a set of signals for the forecaster and let R be
a transition probability from I to S. Assume that before the game starts, the
forecaster observes a sequence of signals (st)t , where each signal st is drawn in-
dependently according to the probability Rit . Following the play at stage t, the
agent observes a stochastic signal that includes the action jt of the forecaster,
and the forecaster observes a stochastic signal that depends on the action triple
(it� jt� kt). The basic model corresponds to the case of perfect monitoring and
perfect forecasts (where S = I and Ri(s)= 1 if i = s and = 0 if i �= s).

In this case, a distribution Q ∈ ∆(J) × ∆(I × K) with QI = µ is imple-
mentable if and only if there exists a distribution Q̂ ∈ ∆(S × I × J × K) with
Q̂(s|i)=Ri(s) and marginal Q on I × J ×K such that

(i) Q̂(i|s� j�k)= Q̂(i|s);
(ii) HQ̂(j) ≥HQ̂(s)−HQ̂(s|k).

Condition (ii) is the usual information constraint on Q. Condition (i) ex-
presses the fact that all information players have on the current state of nature
comes from the signal s of the forecaster.

If the signal to the agent, following the play at stage t, includes st in addition
to jt , then a distribution Q ∈ ∆(J× I ×K) with QI = µ is implementable if and
only if there exists a distribution Q̂ ∈ ∆(S × I × J × K) with Q̂(s|i) = R(i)(s)
and marginal Q on I × J ×K such that

(i) Q̂(i|s� j�k)= Q̂(i|s);
(ii) HQ̂(j� s|k) ≥ HQ̂(s).

9.2. Signaling Structures

The basic model assumes that the stage game has perfect monitoring in the
sense that both the forecaster and the agent are perfectly informed of the ac-
tion triple played at each stage.

As a general property, any reduction of the informational content of the
signals received by the forecaster or by the agent concerning the action triple
results in a reduction of the set of implementable distributions. In other words,
all distributions that are implementable with less informative signals are also
implementable with more informative ones. This follows from the fact that
strategies in the model with less informative signals are also strategies in the
model with more informative signals.

Now we discuss the effects of a change either in the forecaster’s observation
of the agent’s action, or in the agent’s observation of the forecaster’s action, or
in the agent’s observation of the current state of nature.

In this subsection, it will be useful to use the classical information-theoretic
notation I(a;b) to denote the mutual information H(a)−H(a|b) (= H(b)−
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H(b|a)) between two random variables a and b. We also use the nota-
tion IQ(a;b) to make explicit the dependence of IQ(a;b) on the distribution Q
of (a�b).

9.2.1. Imperfect observation of agent’s actions

Assume the forecaster observes at each stage a signal on the agent’s actions.
The basic model corresponds to the case where this signal is fully informa-
tive. Consider the strategies constructed in the proof of Theorem 2. Because
the agent uses a pure strategy, which depends on the observed past states of
nature and the forecaster’s actions only, and because this information is avail-
able to the forecaster, the forecaster can reconstitute the past actions of the
agent even if the signal received on these actions is completely uninforma-
tive. Hence, the designed strategies can still be used. The set of implementable
distributions is thus unchanged under the assumption that the forecaster has
imperfect monitoring on the agent’s actions.

In particular, the characterization of Proposition 4 of the limit Pareto pay-
off to the team for sufficiently long games (θ1 arbitrarily close to 0) remains
unchanged.

Note, however, that the set of equilibrium payoffs in the repeated games
with different interests is modified. Indeed, some deviations of the agent that
are detectable under perfect monitoring may become undetectable under im-
perfect monitoring.

9.2.2. Imperfect observation of forecaster’s actions

Consider the situation where the agent observes the states of nature but does
not have perfect monitoring of the forecaster’s actions. The distribution of the
signal s ∈ S depends on the triple (i� j�k); the conditional distribution of s
given (i� j�k) is denoted by Ri�j�k (∈ ∆(S)).

Given a distribution Q on I × J × K, we denote by Q̂ the distribution on
I×J×K×S with marginal Q on I×J×K and such that Q̂(s|i� j�k)=Ri�j�k(s).
Using this notation, Q is implementable if and only if QI = µ and

HQ̂(s|i�k)−HQ̂(s|i� j�k) ≥HQ(i)−HQ(i|k)�(11)

Notice that in the case of the basic model, HQ̂(s|i�k) = HQ(j|i�k) and
HQ̂(s|i� j�k) = 0, and thus inequality (11) particularizes to the information con-
straint HQ(j|i�k) ≥ I(i;k).

The two special cases of the above characterization that are considered be-
low are reformulations of classical results in information theory: Shannon’s
Noisy Channel Capacity theorem (see, e.g., Cover and Thomas (1991, Theo-
rem 8.7.1, p. 198)) and the Rate Distortion theorem for independent and iden-
tically distributed sources (see, e.g., Cover and Thomas (1991, Theorem 13.2.1,
p. 342)).
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First, consider the special case where the distribution Ri�j�k(s) depends on j
only and I = K. The information constraint (11) for a distribution Q such that
Q(i = k) = 1 can be expressed as HQ(s) − HQ(s|j) = IQ(s; j) ≥ HQ(i). Note
also that a distribution Q with Q(i = k) = 1 is implementable if and only if
it is implementable in the variant of the model where the forecaster does not
observe the actions of the agent and the agent does not observe the states of
nature. Define the capacity of a stochastic signal s as the maximum over the
random variable j of the mutual information I(s; j). Thus, our result shows
that there exists an implementable distribution Q such that Q(i = k) = 1 if
and only if the capacity of s exceeds H(i). This result is equivalent to the classi-
cal Shannon Noisy Channel Capacity theorem for independent and identically
distributed sources.

Second, assume that Ri�j�k(s) depends on j only. The information con-
straint (11) for a distribution Q ∈ ∆(S) × ∆(I × K) can be expressed as
IQ̂(s; j) ≥ IQ(i;k). Indeed, for such a product distribution Q, we have HQ̂(s|
i�k) = HQ̂(s) and HQ̂(s|i� j�k) = HQ̂(s|j). Therefore, the left-hand side of in-
equality (11) equals IQ̂(s; j). Note that IQ̂(s; j) depends only on QJ and IQ(i;k)
depends only on QI×K .

Fix µ ∈ ∆(I). Now assume that the payoff function does not depend on j,
i.e., g(i� j�k) = d(i�k), and let R(D) be the min of IP(i;k) when P is a distri-
bution on I ×K such that PI = µ and EPd(i�k) ≥ D. Let ν ∈ ∆(J). Our result
implies that there exists an implementable distribution Q ∈ ∆(J) × ∆(I × K)
with EQd(i�k)≥D and QI×J = ν ⊗µ if and only if IQ̂(s; j) ≥ R(D). Moreover,
the implementability of a distribution Q ∈ ∆(J)×∆(I×K) does not depend on
the agent observing the states of nature. This generalizes the Rate Distortion
theorem for independent and identically distributed sources (see, e.g., Cover
and Thomas (1991, Theorem 13.2.1, p. 342)).

9.2.3. Unobservable current state of nature

Now consider the case where the agent observes the forecaster’s actions, but
is uninformed of the current state of nature.

The characterization of the full set of implementable distributions in this
case is beyond the scope of this paper. However, consider the subset R of
distributions on I × J × K that are the product of a distribution on J and a
distribution on I ×K.

Following a similar analysis to that of our basic model, one can prove that a
distribution Q ∈R is implementable if and only if

HQ(j)≥ I(i;k)�

If the agent also does not have perfect monitoring of the forecaster’s actions,
but receives a signal s as a function of the forecaster’s action j, we proceed as
in Section 9.2.2. Consider the conditional distribution of s given j by Rj ∈ ∆(S).
Following the same notation, we obtain that a distribution Q that is a product
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of a distribution on J and a distribution on I ×K is implementable if and only
if QI = µ and

HQ̂(s)−HQ̂(s|j) ≥ IQ(i;k) =HQ(i)−HQ(i|k)�

9.3. State of Nature Processes

Now we analyze the variant of the basic model where the states of nature
follow a Markov chain. In such cases, the distribution of the state of nature in
stage t + 1 is correlated to the distribution of the state in stage t. The adequate
element of study is the expected long-run average Q of the distribution of the
quadruple (it−1� it� jt� kt). Let Q be a distribution on I × I × J × K and let
(i′� i� j�k) have distribution Q.

A Markov chain eventually enters into an ergodic class of states. As players
observe past states of nature, they are eventually informed of the ergodic class
entered by the chain, and it suffices to study the expected long-run average in
the case of an irreducible Markov chain. Let µ be the invariant measure on I
and let T denote the transition matrix of the Markov chain. The marginal on
I × I of an implementable distribution Q (on I × I × J ×K) is deduced from
the law of the Markov chain: Q(i′ = i′� i = i) = µ(i′)Ti′�i. It turns out that a
distribution Q is implementable if and only if its marginal on I × I coincides
with the marginal imposed by the Markov chain transitions and

HQ(i� j|k� i′)≥HQ(i|i′)�(12)

This last condition thus describes the information constraint when the process
of states of nature follows a Markov chain.

Now we compare the set of implementable distributions under the inde-
pendent and identically distributed and the Markov assumptions. Assume
that Q ∈ ∆(I × J ×K) has marginal µ on I and verifies the information con-
straint HQ(i� j|k) ≥ HQ(i) under the independent and identically distributed
assumption. Let T be the transition of an irreducible Markov chain and let
Q′ ∈ ∆(I × I × J ×K) be the law of (i′� i� j�k), where

(a) (i� j�k) have law Q.
(b) The law of (i′� i) is deduced from the law of the Markov chain: Q(i′ = i′�

i = i)= µ(i′)Ti′�i.
(c) Q′(j = j�k = k|i = i� i′ = i′)= Q(j = j�k = k|i = i).

Now we verify that Q′ verifies the information constraint under the Markov
model. Indeed,

HQ′(j|i� i′�k)

=HQ(j|i�k)

≥HQ(i)−HQ(i|k) =HQ(k)−HQ(k|i) =HQ′(k)−HQ′(k|i� i′)

≥HQ′(k|i′)−HQ′(k|i� i′)=HQ′(i|i′)−HQ′(i|k� i′)�
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where the first and third equalities follow from (a) and (c), the first inequality
follows from the information constraint verified by Q, the second inequality
follows from the concavity of entropies, and the second and last equalities fol-
low from the chain rule of entropies. The obtained inequality is then equivalent
to the information constraint for Markov chains (12) applied to Q.

The information constraint is satisfied in the Markov case whenever it is in
the independent and identically distributed case. This shows that the set of
implementable distributions is augmented when one takes advantage of the
correlations between successive states of nature. This is intuitive because in
the Markov case the need for information transmission is not as important as
it is in the independent and identically distributed case.

9.4. Information Banking

In the Markov chain case, the distribution of it given the sequence of past
states i1� � � � � it−1 is a function of it−1 only. Let νi be the distribution of it given
it−1 = i. Define the random partition of N, N = ⋃

Ni, where Ni is the set of all
stages t such that it−1 = i. For every i ∈ I and a strategy pair (σ�τ) we define
(for every positive integer n) the distribution Qi�n

σ�τ as the expected empirical
distribution of action triples in stages t ∈ Ni with t ≤ n. The marginal on I of
the distribution Qi�n

σ�τ is νi. Our proof (of the result of the basic model) implies
that if Qi ∈ ∆(I×J×K) verifies the information constraint and has marginal νi
on I, and µ is the invariant distribution of the Markov chain, then the distri-
bution Q = ∑

i µ(i)Qi is implementable. Indeed, by considering the states in
each Ni separately, the team can collate the strategies that implement Qi to
a strategy pair (σ�τ) in the Markov chain games so that Qi�n

σ�τ converges to Qi

and, thus, as |{t≤n : t∈Ni}|
n

→ µ(i) as n → ∞, we deduce that Q = ∑
i µ(i)Qi is

implementable.
Now we verify that the distribution Q′ on I × I × J × K, defined as

Q′(i′� i� j�k) = µ(i′)Qi′(i� j�k) (and, therefore, Q′
I×J×K = ∑

i µ(i)Qi), verifies
the information constraint under the Markov chain model.

HQ′(i� j|k� i′) =
∑
i′∈I

µ(i′)HQi′ (i� j|k)

≥
∑
i′∈I

µ(i′)HQi′ (i)

= HQ′(i|i′)�
Our characterization of the implementable distribution in the Markov chain

process implies, however, additional implementable distributions. For any real
number α, say that a distribution Q on I × J × K obeys the α-information
constraint if HQ(i� j|k) ≥ HQ(i) + α. Note that α can be positive, negative, or
zero. The characterization of implementable distributions by the information
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constraint (12) implies that Q is implementable if and only if there are distri-
butions Qi ∈ ∆(I × J × K) with marginals ((Qi)I =) νi on I and constants αi

such that (i) Qi obeys the αi-information constraint, (ii)
∑

i µ(i)Qi = Q, and
(iii)

∑
i µ(i)ai = 0.

This comparison of the Markov chain and the independent and identically
distributed cases highlights the need for the forecaster to signal at stages t ∈ Ni

on states of nature in stages t ∈ Ni′ where i �= i′.

9.5. Robustness

The analysis of the previous extensions demonstrates (indirectly) the robust-
ness of our main results to some departures in the assumptions made either on
the state of nature process, or on the foresight ability of the forecaster, or on
the monitoring and forecasting possibilities of the agent. We wish to comment
on robustness when all assumptions are perturbed together and to allow for a
wide variety of perturbations. To do this, we introduce a generalized version of
our model.

We start by describing the dynamics of the states of nature and the signaling
structure of the game. A point ω= (i1� i2� � � �) ∈ I∞ is chosen by nature accord-
ing to some distribution P . Before the game starts, player n (n = 1�2 in the
two-player game) observes a random signal sn0 whose distribution depends on
the sequence ω. At stage t, player 1 takes an action jt ∈ J and player 2 takes
an action kt ∈ K. Following the play at stage t, player n observes the realiza-
tion of a random signal8 snt , where the conditional distribution of (s1

t � s
2
t ), given

ω�s1
0� s

2
0� j1�k1� � � � � s

1
t−1� s

2
t−1� jt�kt , depends only on (ω� jt�kt). The payoff vec-

tor at stage t depends on the state of nature at stage t and the action pair at
stage t.

A strategy of player 1 (respectively, player 2) specifies the action jt (respec-
tively, kt) at stage t as a function of all his past information, namely, as a func-
tion of s1

0� � � � � s
1
t−1 (respectively, s2

0� � � � � s
2
t−1).

To quantify a small perturbation in this general model, we introduce a proper
definition to measure such perturbation. First, the stochastic process (I∞�P)
is within δ of an independent and identically distributed process if there exists
µ ∈ ∆(I) and probability distributions P̂[n] on (I × I ′)m, where I ′ is a copy of I
and m = [δ−2], such that (i′n+1� � � � � i

′
n+m) has distribution µ⊗m, the projection

of P̂[n] on the m I-coordinates coincides with P , i.e., P̂[n]In(in+1� � � � � in+m) =
P(in+1� � � � � in+m|i1� � � � � in), and

EP̂[n]

(
n+m∑
t=n+1

I(it �= i′t)

)
≤ δ−1 ∀ sufficiently large n�

8In fact, we can assume without loss of generality that the signals are, moreover, deterministic.
Indeed, we can “push” all randomness into I; this will, however, require an infinite set of states.
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An example of a process (with values in IN) that is within δ of an independent
and identically distributed process is a nonstationary Markov chain (i.e., with
time-dependent transitions), where the probabilities Tt(i

′� i) of transition at
stage t from state i′ to state i obey

∑
i∈I |Tt(i

′� i)−µ(i)| < δ for all sufficiently
large t.

Second, we say that the forecaster has δ-perfect foresight if, for all sufficiently
large t, the forecaster can guess the future m := [1/δ−2] states of nature so
that the expected number of errors is ≤ 1/δ. Formally, there are functions
ft : (sf0 � � � � � s

f
t ) �→ In, t ≥ 0, such that

E

(
m∑
�=1

I((ft)� �= it+�)

)
≤ 1/δ ∀ sufficiently large t�

The agent has δ-perfect monitoring if, for all sufficiently large t, the agent
can guess the past m := [δ−2] (triples of) action profiles so that the expected
number of errors is less than or equal to 1/δ. Formally, there are functions
at : (sa0� � � � � s

a
t−1) �→ (I × J)t−1, t ≥ 1, such that

E

(
m∑
�=1

I(at
t−� �= (it−�� jt−�))

)
≤ δ−1 ∀ sufficiently large t�

The agent has δ-forecast if, for every t ≥ 1, every ω = (i1� i2� � � �) and ω′ =
(i′1� i

′
2� � � �) (in I∞) with (i1� � � � � it) = (i′1� � � � � i

′
t), and every (jt�kt) ∈ J × K,

the distribution of s2
t given (ω� jt�kt) is within9 δ of its distribution given

(ω′� j′
t � k

′
t).

Finally, we say that the game model Γ is δ-close to the basic model Γ ′ if the
process of states of nature is within δ of the independent and identically dis-
tributed µ⊗N, the forecaster has δ-perfect foresight, and the agent has δ-perfect
monitoring and δ-forecast.

The robustness theorem states that the set of implementable distributions of
a small perturbation of one instance of the basic model is close to the set of
implementable distributions of that instance. Formally:

THEOREM 3—The Robustness Theorem: Let Γ ′ be a basic model game. For
every ε > 0 there is δ > 0 such that if Γ is δ-close to Γ ′, then the set of imple-
mentable distributions of Γ are within ε of the set of implementable distributions
of Γ ′.

Observe that the basic model is the special case where s1
0(ω) = ω, s2

0(ω) is a
constant independent of ω, and sn(it� jt� kt)= (it� jt� kt). The classical model of

9If the signal sat takes values in a finite set Sa, then we can use the norm distance between
distributions; in the general case we refer to the Kullback–Leibler distance.
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repeated games with incomplete information is the special case where it = it+1

for all t and sn(ω� jt�kt) depends only on the triple (it� jt� kt).
Note, finally, that an important ingredient of the model described above is

that the dynamics of states of nature i ∈ I (where I is the finite set of states
of nature) is independent of players’ actions. The even more general model,
which is not discussed here, enables the transition of states to depend also on
players’ actions and generalizes not only the theory of repeated games with
incomplete information, but also the theory of stochastic games.

9.6. Complementary Information

Another important characteristic of the basic model, and of the extensions
introduced above, is that all information about future states of nature pos-
sessed by the agent is also possessed by the forecaster. One may wish to con-
sider extensions of our models in which both players are partially informed
beforehand of the realized sequence of states of nature.

In such cases, sequential communication schemes, in which information is
sent back and forth between the players, may be more efficient than simulta-
neous schemes in which each player sends information independently of the
information sent by the other (see, e.g., Kushilevitz and Nisan (1997)). The
characterization of the set of implementable distributions in this model is left
as an open problem for future research.
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APPENDIX A: TYPICAL SEQUENCES

Let A and B be two finite sets.

LEMMA 2: Let Q ∈ Tn(A×B). For every α ∈ Tn(QA), we have

|A||A×B| 2(H(Q)−H(QA))n

(n+ |A|)|A×B| ≤ |Tn(Q|α)| ≤ 2(H(Q)−H(QA))n�

PROOF: The point α ∈ An partitions the set {1� � � � � n} into |A| disjoint sub-
sets Na, a ∈ A: Na = {1 ≤ i ≤ n :ai = a}. For a ∈ A we denote by Qa the condi-
tional distribution on B given a, namely, Qa(b) = Q(a�b)/

∑
b∈B Q(a�b). For

mailto:aneyman@math.huji.ac.il
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every point β ∈ Bn and a subset N of {1�2� � � � � n}, we denote by (β|N) the
N-vector (bj)j∈N . Note that for every β ∈ Bn, we have ρ(α�β) = Q if and only
if for every a ∈ A, we have ρ(β|Na)= Qa. Therefore, it follows from (3) that

∏
a∈A

2H(Qa)|Na|

(|Na| + 1)|B| ≤ ∣∣{β ∈ Bn :ρ(α�β)= Q}∣∣ ≤
∏
a∈A

2H(Qa)|Na|�

The result follows because
∏

a∈A (|Na| + 1)|B| ≤ (n + |A|)|A×B|/|A||A×B| and∏
a∈A 2H(Qa)|Na| = 2(H(Q)−H(QA))n. Q.E.D.

LEMMA 3: Let Q ∈ Tn(A×B), 1 ≤ fn ≤ |Tn(Q)|/|Tn(QA)|, and g(n) > 1 such
that (fn(g(n)− 1)2)/(2g(n)) > nH(QA) ln 2. Then there is a subset S of Tn(QB)
with

|Tn(QA)| · |Tn(QB)|
|Tn(QA×B)| fng(n) ≤ |S|< 1 + |Tn(QA)| · |Tn(QB)|

|Tn(QA×B)| fng(n)

such that for every x ∈ Tn(QA), there are at least fn elements z ∈ S such that
(x� z) ∈ Tn(Q).

PROOF: Let m be the least integer greater than or equal to (|Tn(QA)| ·
|Tn(QB)|)/(|Tn(QA×B)|)fng(n). If m ≥ |Tn(QB)|, set S = Tn(QB). Otherwise,
let S be a random subset of Tn(QB) that has m elements. Note that for every
x ∈ Tn(QA), we have E|S∩Tn(Q|x)| ≥ fng(n). By the large deviation inequality
for sampling without replacement,10 for every x ∈ Tn(QA), we have

P
(|S ∩ Tn(Q | x)| ≤ fn

)
< exp

(
−fn(g(n)− 1)2

2g(n)

)
< 2−nH(QA)

and, therefore, P(|S∩Tn(Q | x)| ≤ fn) times |Tn(QA)| is less than 1. Therefore,
the expected number of elements x ∈ Tn(QA) such that |S ∩ Tn(Q|x)| ≤ fn is
less than 1. Therefore, there is a subset S of Tn(QB) with the desired prop-
erty. Q.E.D.

APPENDIX B: APPROXIMATION OF PROBABILITIES

LEMMA 4: For all ε > 0 ∃N(ε) such that ∀ Q̃ ∈ ∆(I×J×K) with HQ̃(i� j|k)−
HQ̃(i)≥ 0 and ∀n≥N(ε), ∃Q ∈ Tn(I × J ×K) such that

HQ(i� j|k)−HQ(i)≥ ε(13)

and

‖Q− Q̃‖1 < 7ε�(14)

10For example, Section 6 and inequality (2.2) of Theorem 1 in Hoeffding (1963).
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PROOF: Let A := J×K. The (real-valued) entropy functions R �→HR(i� j|k)
and R �→ HR(i) defined on ∆(I × A) are continuous and thus uniformly con-
tinuous. Therefore, for every ε > 0, there is N(ε) > |I × A|/ε, such that for
every R�R′ ∈ ∆(I × A) with ‖R − R′‖1 ≤ |I × A|/N(ε) we have |HR(i� j|k) −
HR′(i� j|k)| < ε and |HR(i) − HR′(i)| < ε. Let R be the product distribution
Q̃I ×UJ × Q̃K on I ×A, where UJ is the uniform distribution over J.

Then HR(i� j|k) = HQ̃(i) + log |J|. Let Rε = 3εR + (1 − 3ε)Q̃. Then, using
the concavity of the entropy function R �→ HR(i� j|k) (Lemma 1), the equality
Rε

I = Q̃I , and the inequality log |J| ≥ 1 (which follows from |J| ≥ 2), we have

HRε(i� j|k) ≥ (1 − 3ε)HQ̃(i� j|k)+ 3εH(Rε
I)+ 3ε�

which implies

HRε(i� j|k)−HRε(i)≥ 3ε�

Let Q ∈ ∆(I ×A) with Tn(Q) �= ∅ and ‖Q−Rε‖1 ≤ |I ×A|/n.
Therefore, for n≥ N(ε), we have |HQ(i� j|k)−HRε(i� j|k)| < ε and |HQ(i)−

HRε(i)| < ε, and, therefore,

HQ(i� j|k)−HQ(i) ≥ ε�

which proves (13). In addition

‖Q− Q̃‖1 < ‖Q−Rε‖1 + ‖Rε − Q̃‖1 ≤ 7ε� Q.E.D.

LEMMA 5: Fix ν ∈ ∆(I) and n such that Tn(ν) �= ∅. For every x = (x1� � � � �
xn) ∈ In there is x′ = (x′

1� � � � � x
′
n) ∈ Tn(ν) such that

|{t :xt �= x′
t}| ≤ n‖ρ(x)− ν‖1�

PROOF: By induction on the integer, d(x) := n‖ρ(x) − ν‖1. If d(x) = 0, set
x′ = x. Assume that d(x) > 0. There exist elements i� i′ ∈ I such that ρ(x)(i) >
ν(i) and ρ(x)(i′) < ν(i′). Pick t ∈ {1 ≤ t ′ ≤ n :xt′ = i} and define x̃′′ ∈ In by
x′′
k = xk if k �= t and x′′

t = i′. It follows that d(x′′) = d(x) − 2 and, therefore,
by the induction hypothesis there is x′ ∈ Tn(ν) such that |{t :x′′

t �= x′
t}| ≤ d(x′′)

and, therefore, |{t :x′
t �= xt}| ≤ d(x′′)+ 2 = d(x). Q.E.D.

COROLLARY 2: Fix ν ∈ ∆(I) and n such that Tn(ν) �= ∅. There exists a map
f : In → Tn(ν) such that, for µ ∈ ∆(I), we have

Pµ⊗n

( ∑
1≤t≤n

Ixt �=ft (x) > ‖ν −µ‖1n+ εn

)
≤ |I|2

ε2n
�

In particular, if x �→ x̃ is a map from In to In that minimizes the sum
∑

1≤t≤n Ixt �=x̃t

and ‖µ − ν‖ ≤ 7ε, then the probability that
∑

1≤t≤n Ixt �=x̃t is greater than or equal
to 8εn is less than or equal to |I|2/(εn)2.
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PROOF: Let f : In → Tn(ν) be the function that maps x ∈ In to the ele-
ment x′ ∈ Tn(µ), as in Lemma 5. The distribution of xt , 1 ≤ t ≤ n, is µ.
Therefore, ρ(x)(i) is the sum of the n independent and identically distributed
{0�1/n}-valued random variables Ixt=i/n, 1 ≤ t ≤ n. Thus, Eρ(x)(i) = µ(i) and
the variance of ρ(x)(i) is ≤ µ(i)/n. For every i ∈ I, we have |ρ(x)(i)−µ(i)| ≥
ε
|I| whenever |ρ(x)(i) − ν(i)| ≥ |µ(i) − ν(i)| + ε

|I| . Therefore, by using Cheby-
shev’s inequality, we have

Pµ⊗n

(
|ρ(x)(i)− ν(i)| ≥ |µ(i)− ν(i)| + ε

|I|
)

≤ µ(i)|I|2

ε2n

and then

Pµ⊗n(‖ρ(x̃)− ν‖1 ≥ ‖µ− ν‖1 + ε)≤ |I|2

ε2n
�

Hence the result, because
∑

1≤t≤n Ixt �=ft (x) ≤ n‖ρ(x)− ν‖1. Q.E.D.
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