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Abstract

Consider agents who are heterogeneous in their preferences and wealth levels. These agents may ac-
quire information prior to choosing an investment that has a property of no-arbitrage, and each piece 
of information bears a corresponding cost. We associate a numeric index to each information purchase 
(information-cost pair). This index describes the normalized value of the information purchase: it is the 
risk-aversion level of the unique CARA agent who is indifferent between accepting and rejecting the pur-
chase, and it is characterized by a “duality” principle that states that agents with a stronger preference for 
information should engage more often in information purchases. No agent more risk-averse than the index 
finds it profitable to acquire the information, whereas all agents less risk-averse than the index do. Given 
an empirically measured range of degrees of risk aversion in a competitive economy with no-arbitrage 
investments, our model therefore comes close to describing an inverse demand for information, by predict-
ing what pieces of information are acquired by agents and which ones are not. Among several desirable 
properties, the normalized-value formula induces a complete ranking of information structures that extends 
Blackwell’s classic ordering.
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1. Introduction

We refer to any pair consisting of an information structure and a price for it as an information 
purchase. Such purchases, if they happen, are the manifestation of the demand for information. 
How many people purchase a piece of information necessarily depends on three components: 
the quality of that information, the cost of acquiring it, and the agents’ primitives given by their 
wealth and preferences. The current paper aims at answering the following questions. First, given 
an information purchase, can its normalized value, which captures the information-price tradeoff, 
be uniquely characterized?1 Second, in a competitive economy, who are the agents willing to go 
ahead with a given information purchase?

We answer these questions by analyzing information purchases made by risk-averse agents (or 
investors) prior to choosing among risky investments. Key to our analysis is the set of investments 
available which we call no-arbitrage investments. In order to study information acquisition based 
on investment motives, we assume that no-arbitrage investments are not profitable under the 
agents’ prior; the only investors who find investments profitable are the ones who acquire some 
information. Second, we note that for the value of information to be meaningful and comparable 
across heterogeneous agents, one needs the set of available investments to be rich enough; in 
particular, we assume the existence of complete markets.2 We follow the literature on this subject 
(such as Kelly, 1956; Arrow, 1971) and take as no-arbitrage investments the set of all those with 
a nonpositive expected return under the prior.3

We begin by showing that an agent’s demand, or her preference, for information is charac-
terized by her degree of risk aversion. Less risk-averse agents have a stronger preference for 
information than do more risk-averse agents, in the following sense. We show that an agent u1 is 
uniformly less risk-averse than agent u2 if and only if the fact that agent u2 acquires some infor-
mation is enough to guarantee that agent u1 also acquires that information, independently of the 
wealth levels considered.4 Therefore, agents’ demand for information in our model is entirely 
captured by their uniform ranking of risk aversion.

We seek an objective underpinning of normalized values. That is, paralleling the approach 
of Aumann and Serrano (2008) for ordering riskiness, we apply the following duality principle 
to define the normalized value of an information purchase5: For an information purchase to be 
considered as objectively more valuable than another one, it must be the case that, whenever 

1 We add the “normalized” qualification because the index will also rely on the price of the purchase, and not be based 
only on the information structure. The term “normalized informativeness” could also be used to refer to our index.

2 For instance, some agents find it beneficial to have access to a certain futures market, while others do not value 
information about this market as much.

3 No-arbitrage investments, in this sense of not offering any profitable or “arbitrage” opportunity, were also used in 
Cabrales et al. (2013). “No-speculative” investments could be an alternative name to express the same idea.

4 To be precise, u1 is uniformly less risk-averse than u2 when, for all wealth levels w1 and w2, the coefficient of 
absolute risk aversion of u1 at w1 is not greater than the coefficient of risk aversion of u2 at w2.

5 In Aumann and Serrano (2008), riskiness is conceived as “dual” to risk aversion, while here the value of information 
is “dual” to preference for information.
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an agent is willing to accept the latter, every agent with a stronger preference for information 
must, a fortiori, accept the former. To be more precise, when we say that “u1 likes information 
better than u2,” we mean “If u2 accepts a purchase at some wealth level, then u1 accepts it at 
any wealth level” (uniform comparison). For this ordering, we introduce a suitable correspond-
ing ordering of information purchases according to the duality principle described above: “If 
u1 likes information better than u2, and if a1 is more valuable than a2, then u1 should accept 
a1 if u2 accepts a2.” We show that this yields a complete ordering of information purchases, 
which is characterized by our normalized-value formula. The normalized value of the purchase 
turns out to be equal to the risk aversion of the unique CARA (constant absolute risk aver-
sion) agent who is indifferent between accepting and rejecting it. Such a critical level of risk 
aversion is expressed as a specific function of relative entropies and the price of the purchase, 
where the function is increasing with respect to the former and decreasing with respect to the 
latter.6

The fact that a purchase has a higher normalized value than another one does not mean that 
more agents will accept it. Rather, a purchase having a higher normalized value is equivalent 
to that purchase having a larger set of agents who accept it regardless of their initial wealth. 
Thus, for CARA agents, the more valuable a purchase is, the more of them accept it. But more 
importantly, given our results connecting preferences for information and risk aversion in our 
settings, any agent (CARA or not) whose risk aversion always exceeds the normalized value will 
reject the purchase, while any agent whose risk aversion is less than the normalized value for all 
wealth levels, will accept it. The remaining agents, whose risk aversion for some initial wealth 
level is below the normalized value but above it for other wealth levels, may accept or reject the 
purchase; in other words, their decision is “subject to wealth effects.” Were it not for this latter set 
of agents, the entire set of agents who accept an information purchase would be monotonically 
increasing in the normalized value of the purchase. Having said that, if we assume that agents 
are sufficiently heterogeneous in their wealth, and that we can know the degree of risk aversion 
of agents, then the normalized value of information purchases is a useful tool that delivers a 
clear prediction of what pieces of information will be acquired in a competitive economy (i.e., 
in which each investor views herself as so small that her information purchase decision does not 
signal any relevant information to the rest of the economy).7

Our normalized-value measure provides some interesting insights on the demand for infor-
mation. For instance, a decrease by a certain percentage in the cost of information translates 
into an increase in the same proportion in the normalized value of the corresponding informa-
tion purchase. This means that, whenever the price of information drops by half, agents who 
are twice more risk-averse than those who initially bought a piece of information, become 
now willing to acquire that piece of information. Another insight is obtained by examining 
the least and most valuable purchases. Quite intuitively, the least valuable purchases are the 
ones associated to those with null informational content. Perhaps surprisingly, the most valuable 

6 In the appendix, we provide two alternative definitions of preference for information: (i) “If u2 accepts a purchase at 
some wealth level, then u1 accepts it at some wealth level” (minimal comparison); and (ii) “If u2 accepts at some wealth 
level w, then u1 also accepts at w, for every w” (wealth-wise comparison). We formulate the corresponding orderings 
based on the duality principle. Strikingly, all three orderings of information purchases coincide: all three are represented 
by our normalized-value formula. As we also show in the appendix, another characterization of the normalized value is 
expressed in terms of the group of agents who are willing to accept a given information purchase. This parallels the work 
of Hart (2011), who provides this comparison of orderings for indices of riskiness.

7 Even nonatomic agents are often able to avoid detection of informed trading in financial markets by, for example, 
hiding the order size. See, e.g. Bessembinder et al. (2009).
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purchases include not only those that always allow the purchaser to learn the true fundamen-
tal state, but also all those that always allow the purchaser to exclude one fundamental state 
from the set of all possible states that will be realized. More generally, our ordering of in-
formation purchases is monotonic with respect to Blackwell (1951)’s ordering of information 
structures.

As with any index, it is important to understand what our formula is telling us. Ours is the 
first index to directly capture the information-price tradeoff in an information purchase. It does 
so by separating that tradeoff from potential wealth effects. We assume a competitive econ-
omy in which only no-arbitrage investments are available before the arrival of new information. 
In such an economy, the higher the index of an information purchase, the larger set of risk-
averse investors who would accept the purchase regardless of their wealth. Also, a smaller set 
of risk-averse investors would reject it regardless of their wealth. Since it is a numeric index, 
our normalized-value formula orders all information purchases. And hence, for a fixed price, it 
orders all information structures.

It is important to compare our results here with those of Cabrales et al. (2013), where we 
have provided another information index. In that paper, the informativeness of an information 
structure is characterized by the reduction of entropy from the prior to the posteriors. That en-
tropy informativeness index is silent regarding the information-price tradeoff in an information 
purchase. Nevertheless, with a uniform prior, and for small amounts of information, that index 
is close to the index proposed here when the purchase price is kept constant. But they differ 
significantly when the amount of information in the signals is larger.

The methodology we use here is very different, and it complements the one we used in 
Cabrales et al. (2013). In that paper, one piece of information is more valuable than another 
one if the maximal price any agent in the economy is willing to pay for the former is larger than 
the maximal willingness to pay for the latter. The comparison is made while all agents have the 
same wealth level. Also, the class of utility functions considered there excluded the possibility 
of ruin. Therefore, that index is more relevant when agents are homogeneous in wealth and wish 
to end up with nonnegative wealth with probability 1. In contrast, in this paper, we allow wealth 
levels to differ across agents, who consider the contingency of negative wealth. This is either 
because of a high price in the information purchase or because of losses in the investment cho-
sen. Importantly, our index is a vehicle to reveal wealth-independent demand for information, 
defined as the set of agents who accept the purchase regardless of their wealth, rather than on 
the maximal price an agent in the economy is willing to pay for it. Thus, we view both indices 
as providing different useful ways to evaluate a given information structure. As an additional 
insight, we have shown that while our “maximum price dominance” led to a well-known object 
– entropy reduction – in our previous paper, thereby endowing entropy with new meaning, our 
more axiomatic approach in the current study, based on duality, leads to a formula that is new to 
information theory.

The paper is organized as follows. Section 2 describes the model. Section 3 relates the value 
of information and risk aversion. Section 4 introduces the “uniformly more valuable” ordering, 
the normalized-value formula, and establishes our main result. Section 5 presents our results 
connecting the normalized value of an information purchase to levels of risk aversion in the 
economy. Section 6 examines a number of properties of the normalized value and presents sev-
eral examples. Section 7 is devoted to related literature, and Section 8 concludes. Some of the 
more technical proofs and additional justifications and properties of the index are collected in an 
appendix.
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2. The model

We consider an agent who, prior to making an investment decision, may acquire some infor-
mation at a cost. In this section we define the conditions under which this agent acquires a piece 
of information.

2.1. Utility for wealth

We consider an investor with initial wealth w and a monetary utility function u defined on R. 
We assume that u is nondecreasing, strictly concave,8 and twice differentiable. We let U be the 
set of such monetary utility functions. We identify agents by their monetary utility functions; 
thus, the term “agent u” refers to an agent with utility function u.

Given u ∈ U and w ∈ R, let ρu(w) = −u′′(w)
u′(w)

be the Arrow–Pratt coefficient of absolute risk 

aversion of agent u at wealth w. We also let R(u) = supw ρu(w), and R(u) = infw ρu(w). We 
say that agent u2 is uniformly less risk-averse than agent u1 whenever R(u2) ≤ R(u1). It is 
sometimes necessary to assume that u has decreasing absolute risk aversion in wealth. We thus 
let UDA be the subset of agents in U for whom ρu is nonincreasing.

2.2. Investments

There is a finite set K of states of nature, about which the agent is uncertain. The agent’s 
prior on K is p ∈ �(K), assumed to have full support. The set of investment opportunities 
consists of all no-arbitrage assets given p, that is, assets with a nonpositive expected return: 
B∗ = {x ∈ R

K, 
∑

k pkxk ≤ 0}.9 When (i) the agent’s initial wealth is w, (ii) x ∈ B∗ is chosen, 
and (iii) state k is realized, the agent’s final wealth is w + xk .

Some features of the set B∗ of available investments are worth emphasizing. First, 0 ∈ B∗, 
that is, not investing is feasible. Second, no agent in our class prefers to invest in the absence of 
new information, although this may change if some new information arrives. With “no-arbitrage” 
assets, the only motive for investing is the arrival of new information, and for this reason “no-
arbitrage” assets provide a useful framework to measure the value of information. Finally, B∗ is 
unbounded, an assumption which, although common in the literature on investment under lim-
ited information (see, e.g., Kelly, 1956; Arrow, 1971), may appear incompatible with real-life 
markets. Note, however, that all agents whose posteriors are in the interior of �(K) choose in-
vestments that are bounded. This implies in particular that replacing B∗ by a sufficiently large 
compact subset spanning all dimensions of uncertainty (complete markets) would not change the 
analysis when posteriors are interior. See also Section 6.6 for more on this point.

8 In our framework, risk-neutral agents would sometimes make unbounded optimal investments, which creates techni-
cal problems while adding little to content. We therefore exclude them from the analysis.

9 The vector p = (p1, . . . , pk, . . . , pK) in the definition of no-arbitrage assets corresponds to the price vector of Arrow 
securities, where pk can be interpreted as the price of an asset that pays 1 in state k and 0 in all other states. The fact that 
this vector coincides with the agent’s prior p means that no-arbitrage assets cannot yield a positive expected return. We 
disentangle the two roles of p – price and priors – in subsection E.3 in the appendix.
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2.3. Information purchases

Before choosing an investment, the agent has the opportunity to engage in an information 
purchase a = (μ, α). Here, μ > 0 represents the cost of the information purchase, paid up front, 
and α is the information structure representing the information obtained from a. That is, α is 
given by a finite set of signals Sα , together with probabilities αk ∈ �(Sα) for every k.10 When 
the state of nature is k, αk(s) is the probability that the signal observed by the agent is s. Signal 
s has an ex-ante probability pα(s) = ∑

k pkαk(s) of being realized, and we assume, without loss 
of generality, that pα(s) > 0 for every s. For each signal s ∈ Sα , we let qs

α = (qs
k)k ∈ �(K) be 

the posterior probability distribution conditional on s, and derived from Bayes’ rule.
We say that a is excluding, if for every signal s, there exists k such that qs

k = 0. It is nonex-
cluding otherwise. Excluding information purchases are such that, for every received signal, there 
exists a state of nature that the agent can exclude.

2.4. Optimal investment after receiving information

Given a belief q , an agent with wealth w and utility u chooses x ∈ B∗ in order to maximize 
her expected utility over all states k ∈ K . The maximum expected utility is then V (u, w, q), 
given by:

V (u,w,q) = sup
x∈B∗

∑
k

qku(w + xk).

2.5. Acceptance of information purchases

The agent with utility function u and wealth w accepts an information purchase a = (μ, α) if 
and only if paying μ upfront to receive information according to α generates an expected utility 
greater than or equal to staying with wealth w. This is the case if and only if:∑

s

pα(s)V (u,w − μ,qs
α) ≥ u(w).

In particular, the agent is small enough so that her acceptance/rejection decision as well as her 
investments do not affect prices, or the information available in the economy. This assumption 
rules out situations in which agents need to take into account the strategic consequences of their 
own actions. In this sense, our framework fits that of a competitive economy. Also, the right-hand 
side in the above inequality implies that the risk-free rate is zero, an assumption that could be 
easily modified.

3. Risk aversion and preference for information

In order to arrive at the concept of the normalized value of information purchases, it is useful 
to first understand which characteristics of an agent’s utility function make her demand for infor-
mation increase or decrease. As it turns out, an agent’s preference for information is determined 
by her risk aversion.

10 In Cabrales et al. (2012), an earlier working paper version of the current work, we show (in Section 6.6) that this 
finiteness assumption is not crucial for our results.
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Our first task is to define what it means for one agent to like information better than another 
agent. In general terms, we say that an agent u2 likes information better than another agent u1

when u2 accepts information more often than u1. In order to make the concept precise, we need 
to be careful about the wealth levels at which we compare the acceptances and rejections of 
information purchases by u1 and u2.

Our concept of uniform preference for information requires agent u2 to accept the information 
purchase at all wealth levels whenever u1 accepts it at some wealth level. That is, “agent u2

uniformly likes information better than agent u1” means that, whenever agent u1 is interested in 
purchasing information, it is certain that agent u2 is also interested.

Definition 1. Agent u2 uniformly likes information better than agent u1 if, for every pair of 
wealth levels w1, w2, and for every information purchase a, it is the case that if u1 accepts a at 
wealth w1, then u2 accepts a at wealth w2.

Alternative concepts of preferences for information and their consequences are studied in the 
appendix. Our first result follows:

Theorem 1. Given u1, u2 ∈ U , the following two conditions are equivalent:

1. u2 is uniformly less risk-averse than u1,
2. u2 uniformly likes information better than u1.

The formal proof of the result is in the appendix. Here we provide a verbal and elementary 
proof showing that (1) implies (2). As is apparent from this proof, this implication does not rely 
on the fact that all no-arbitrage investments are available, but only on the fact that all available in-
vestments have the no-arbitrage property. Let us assume here that the set of possible investments 
is an arbitrary closed set B .

Assume that u1 accepts a at wealth w1. For every possible signal s, let xs be an optimal 
investment for u1, given signal s and posterior beliefs qs

α . Starting from wealth level w1, making 
the information purchase a, and then making corresponding investments, is a risky bet that yields 
an expected utility to agent u1 at least equal to u1(w1). Therefore, the same risky bet, starting 
from wealth w2, yields an expected utility to agent u2 which is at least equal to u2(w2), since 
this agent is uniformly less risk-averse than u1. This does not mean, of course, that investment 
qs
α after signal s is optimal for agent u2, but it does imply that, when agent u2 is allowed to 

choose investments in B , she obtains an expected utility at least as large as u2(w2). Therefore, 
u2 accepts a at w2 as well.

The proof of the converse part is somewhat more involved than that for the direct part, as 
one needs to derive a conclusion about the risk-aversion levels of the agents at all wealth levels, 
and risk aversion is a local property. In order to prove the result in the appendix, we rely on 
information structures that provide “little” information, on agents who take “small” investments, 
and thus on situations where only local properties of utility functions matter.

Theorem 1 establishes the connection between preference for information and risk aversion. 
Lemma 2 in Cabrales et al. (2013) shows that an agent with logarithmic utility agrees to an 
information purchase whenever a more risk-averse agent does. Theorem 1 both extends this result 
to general pairs of utility functions, and shows that a converse result holds, namely, that an agent 
whose preference for information is higher than another must be necessarily less risk-averse.
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It is appropriate to underscore the limitations of Theorem 1. Although many pairs of agents 
cannot be ranked uniformly by their risk aversion, many other pairs of agents still can. The result 
shows that, in our settings, those pairs of agents are exactly those who can be ranked according 
to their uniform preference for information. Indeed, the result applies in a nonvacuous way only 
to pairs of utility functions whose risk aversion levels can be separated by a constant: the risk 
aversion of u1 for any wealth level always exceeds a constant, while for u2, it always falls below 
that constant. Nonetheless, the economic environments described by our no-arbitrage condition 
provide a general framework in which willingness to pay for information decreases with risk 
aversion (see Eeckhoudt and Godfroid, 2000, and our literature review section below).

The following example illustrates the relationship between risk aversion and preference for 
information. We do this in a set-up in which all available investments have the no-arbitrage prop-
erty. At the same time, not all investments with that property are available. The direct proof in 
the example that willingness to pay for information decreases with risk aversion is already in-
volved. This is true even though the case featured by the example we consider is the simplest one 
that is not entirely trivial. There are only two states of nature and the information structure fully 
reveals the state. The difficulty in proving something so simple shows the usefulness of Theo-
rem 1, which, of course, applies to general no-arbitrage investment sets and general information 
structures.

Example 1. Suppose that a businessperson with CARA preferences is deciding whether or not to 
invest an amount to support a technology startup in order to do research on a prototype electric 
car. There are two states of the world: high (the research is successful) and low (the research 
fails). The payoff from not investing is 0 in both states. The net payoff from investing is G in the 
high state and −L in the low state, where G, L > 0 are parameters. We consider an information 
structure α that perfectly reveals the state. Assume that the prior probability of the state being 
low, denoted by p, is such that:

G(1 − p) − Lp < 0,

or, equivalently,

p >
G

G + L

so that even a risk-neutral agent will not invest in the absence of new information. The maximal 
amount that the businessperson with initial wealth w and coefficient of risk-aversion r is willing 
to pay for α, denoted I , is independent of w and is given by the relationship:

exp(−rI ) = (1 − p) exp (−rG) + p.

Hence, we have:

I = −1

r
(ln(1 − p) exp(−rG) + p) .

If we let

f (r) = − ln[(1 − p) exp (−rG) + p],
then

I = f (r)
,

r
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but I is then a decreasing function of r . To see this, note first that

∂
(

f (r)
r

)
∂r

= f ′ (r) r − f (r)

r2
.

According to the mean value theorem, since f (0) = 0, there is some y ∈ (0, r) such that

f (r) = f ′ (y) r;
and since f (r) is strictly concave, f ′ (y) r > f ′ (r) r , and thus

∂
(

f (r)
r

)
∂r

= f ′ (r) r − f ′ (y) r

r2
< 0.

In closing the section, we observe that willingness to pay for information may not be decreas-
ing with respect to risk aversion if some available investments do not satisfy the no-arbitrage 
property.

Example 2. Consider a CARA agent with a coefficient of risk aversion r . The agent has the 
option not to invest, or to invest $1 in an asset that pays $10 with probability 0.9 (the state is 
good) or $0 with probability 0.1 (the state is bad). The investor could purchase information at a 
price μ = $0.50 and learn the state for sure before investing.

The payoff to the agent who does not purchase the information and always invests is:

1 − 0.9 exp(−9r) − 0.1 exp(r);
the payoff to an agent who purchases the information and invests in the good state is:

1 − 0.9 exp(−8.5r) − 0.1 exp(0.5r);
and the payoff to an agent who does not invest is 0.

It follows that for low degrees of risk aversion such as r < .231, the agent’s optimal strat-
egy is to invest without purchasing the information. For medium degrees of risk aversion, 
r ∈ [.232, 4.60], the optimal strategy is to purchase the information and invest in the good state. 
For large degrees of risk aversion, r > 4.61, it is better for the agent not to purchase the informa-
tion and never invest.

Thus, for small to medium degrees of risk aversion, a more risk-averse agent exhibits a 
stronger preference for information. Notice how the proposed investment violates no-arbitrage, 
as the prior-evaluated expected payoff is positive. The reader can check how, in this example, our 
conclusion would still hold if one restores the no-arbitrage assumption, for instance, by increas-
ing the loss in the bad state.

The example shows that the conclusion in Theorem 1, while applicable to many settings, is not 
universal. In particular, in cases in which information may be purchased in order to hedge against 
risk, for example to hear from experts in order to avoid large losses, if appropriate assets are not 
available in the market, more risk-averse agents may be more willing to pay for information.

4. Preference for information and a value for information purchases

In this section we propose an objective way to define the normalized value of information 
purchases. The approach is based on ordering preferences for information. We offer three variants 
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of the same idea, all of them leading to the same normalized-value index. We present one here 
and relegate the other two to the appendix, which also includes an additional approach based on 
total rejections/acceptances.

Based on the uniform preference for information, as presented in the previous section, we 
move now to define a comparison over information purchases. The definition formalizes the idea 
that if an information purchase is accepted by a first agent, then any purchase that is deemed 
objectively more valuable should a fortiori be accepted by an agent who likes information better 
than the first.11

Definition 2. Let a1, a2 be two information purchases. We say that a1 is uniformly more valuable
than a2 when, given two agents u1, u2 ∈ U such that u1 uniformly likes information better than 
u2 and for every two wealth levels w1, w2, if agent u2 accepts a2 at wealth level w2, then agent 
u1 accepts a1 at wealth level w1.

Note that the requirement of two agents being ordered according to their uniform preference 
for information is extremely demanding. According to Theorem 1, it is equivalent to a situation 
in which absolute risk aversion – no matter where measured – is always greater for one agent 
than for the other. Since this strong requirement is assumed about the two agents in the defini-
tion, the definition itself actually requires very little. Moreover, what it does require seems very 
reasonable, namely, we would expect that agents with a stronger preference for information seek 
out more highly-valued pieces of information.

4.1. Normalized value of information purchases

We now present the cardinal formula that characterizes our information ranking.
For two probability distributions p and q , the relative entropy from p to q , also called their 

Kulback–Leibler divergence, is an asymmetric measure of their discrepancy. It is defined by the 
formula:

d(p‖q) =
∑

k

pk ln
pk

qk

.

It is always nonnegative, and equals zero if and only if p = q . It is finite, provided the support of 
q contains that of p; it takes the value +∞ otherwise. Thus, p and q are “maximally different” 
when q rules out one possibility that p does not.12

Based on the relative entropy, we define the normalized value of an information purchase a
as this quantity:

NV(a) = − 1

μ
ln

(∑
s

pα(s) exp(−d(p‖qs
α))

)
. (1)

In the above formula, and throughout the paper, we use the convention exp(−d(p‖qs
α)) = 0 by 

continuity if d(p‖qs
α) = +∞. The normalized value NV(a) of a is thus well-defined and finite 

11 This principle is referred to as “duality” in Aumann and Serrano (2008).
12 If p were the true distribution and q an approximate hypothesis, information theory would view the relative entropy 
from p to q as giving the expected number of extra bits that would be required to code the information if one were to use 
q instead of p. See, e.g., Kraft (1949) and McMillan (1956), or Kelly (1956) for a betting-market interpretation.
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if and only if there exists s such that −d(p‖qs
α) is finite, which is the case if a is nonexcluding. 

We let NV(a) = +∞ by continuity if a is excluding.
The normalized value of an information purchase decreases with its price and increases with 

the relative entropy of the prior to the posterior probabilities. Specifically, the normalized value 
of an information purchase is measured by the inverse of its price, multiplied by the natural 
logarithm of the expected exponentials of the negative of relative entropy from the prior to each 
of the generated posterior probabilities.13

As a benchmark for the normalized-value index, note that for all t > 0, NV = t is the index 
value for all information purchases which are such that, after every signal s, the relative entropy 
d(p‖qs

α) between the prior p and the posterior qs
α is (i) equal to a constant, and (ii) priced exactly 

at (1/t ) times that constant. In particular, if the cost of such a purchase is exactly t , NV = 1
includes all those information purchases that have a relative entropy of t from the prior to each 
posterior probability.

4.2. Main result

Theorem 2. Let a1, a2 be two information purchases. The following two statements are then 
equivalent:

1. a1 is uniformly more valuable than a2.
2.

NV(a1) ≥ NV(a2).

Let us clarify briefly the usefulness of this theorem as a guide for action. Suppose first that 
an investor has calculated the normalized value of a purchase (hiring an information expert), 
which turns out to be NV1. She also happens to know that her neighbor, more risk-averse than 
her, has hired a different information expert. The neighbor’s purchase has a normalized value of 
NV2 < NV1. Assume also that she views herself as a small agent, that she is not interested in 
investing if no new information arrives, and that she has access to developed financial markets. 
Then she learns from our theorem that she should hire the information expert.

In fact, we show in the next section that the expert hired by the neighbor will be turned down 
for sure by any person whose risk aversion is higher than NV2 everywhere. Also, that expert 
would be hired by those whose risk aversion is lower than NV2 everywhere. The expert with 
normalized-value NV1 that our investor is considering would be turned down by a smaller set of 
agents in the economy (those whose risk aversion exceeds NV1 everywhere). That expert would 
also be hired by a larger set of investors (with risk aversion lower than NV1 everywhere).

This is obviously far from a unanimous evaluation of one expert versus the other. That would 
be the case were they ordered by Blackwell and were they charging the same price. Nevertheless, 
our formula and results, which capture the information-price tradeoff for each expert, become 

13 If we ignore the price μ, the rest of the expression in the normalized-value formula is, remarkably, referred to as 
“free energy” in theoretical physics (see, e.g., Landau and Lifshitz, 1980), where relative entropy plays the role of 
the Hamiltonian of the system. A similar formula appears under the term “stochastic complexity” in machine learning 
(Hinton and Zemel, 1994). Similar formulas appear also in models of rational inattention, where relative entropies are 
replaced by utilities of actions less information cost measured by entropy (see, e.g., Stevens, 2016; Matejka and McKay, 
2014).



A. Cabrales et al. / Journal of Economic Theory 170 (2017) 266–288 277
useful benchmarks of analysis for the decision problem of investors in an environment satisfying 
our assumptions.

Theorem 2 relies on the relationship between demand for information and risk aversion, as 
established in Theorem 1. As we have already seen, it is necessary for this approach that only 
no-arbitrage assets be available and that uninformed agents do not make risky bets. On the other 
hand, when two information purchases are compared, not all assets play a role. This, in turn, 
implies that the assumption that all no-arbitrage purchases are available is not necessary when 
comparing a finite number of information purchases. See Section 6.6 for more details on this.

Proof. Recall the class of CARA (constant absolute risk aversion) utility functions. Given r > 0, 
let ur

C be the CARA utility function with parameter r , given by ur
C(w) = − exp(−rw) for ev-

ery w. For a CARA agent with coefficient r and wealth level w, we consider the problem of the 
optimal portfolio choice when the agent’s belief is q . The next lemma shows that the solution is 
interior when q has full support.

Lemma 1. For every w and r > 0,

1. the optimal portfolio for agent ur
C and belief q with full support is given by

xk = −1

r
(−d(p‖q) + ln

pk

qk

);
2. for every q , the maximum expected utility is:

V (ur
C,w,q) = − exp( −d(p‖q) − rw).

The proof is elementary and provided in the appendix.
We continue with Lemma 2, which shows that NV(a) can be equivalently defined as the 

level of risk aversion of a CARA agent who is indifferent between accepting and rejecting the 
purchase.

Lemma 2. Let a be an information purchase and w be any wealth level.

1. If r > NV(a), then agent ur
C rejects a at wealth level w.

2. If r ≤ NV(a), then agent ur
C accepts a at wealth level w.

Proof. Agent ur
C accepts a if and only if∑

s

pα(s)V (ur
C,w − μ,qs

α) ≥ ur
C(w).

If a is excluding, then the left-hand side of the inequality equals 0, and the inequality is satisfied 
for all r and w. If a is nonexcluding, then the agent accepts a if and only if

− exp(−r(w − μ))
∑

s

pα(s) exp(−d(p‖qs
α)) ≥ − exp(−rw).

This is equivalent to

exp(−rμ) ≥
∑

pα(s) exp(−d(p‖qs
α)),
s
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which in turn is equivalent to r ≤ NV(a). Thus, for r ≤ NV(a), the agent accepts a at every 
wealth level, whereas for r > NV(a), the agent rejects a at every wealth level. �

Equipped with Theorem 1 and Lemma 2, we now proceed to prove Theorem 2.
First assume that a1 is uniformly more valuable than a2, and that NV(a2) is finite. By 

Lemma 2, a CARA agent with a coefficient of risk aversion NV(a2) accepts a2 at every wealth 
level. This agent uniformly likes information better than itself since, by Lemma 2, acceptance 
or rejection for CARA agents is independent of wealth. Since a1 is more valuable than a2, 
this CARA agent also accepts a1 at every wealth level, which implies (also by Lemma 2) that 
NV(a1) ≥ NV(a2).

The case in which NV(a2) is infinite is dealt with similarly: by Lemma 2 every CARA agent 
accepts a2 at every wealth level, which implies that the same agent also accepts a1 at every wealth 
level. By Lemma 2 again, this implies that we also have NV(a1) is also infinite.

Now assume that NV(a1) ≥ NV(a2). Consider two agents u1 and u2 such that u1 uniformly 
likes information better than u2. Given wealth levels w1 and w2, and assuming that u2 accepts a2
at w2, we need to prove that u1 accepts a1 at w1. By Theorem 1 we have R(u1) ≤ R(u2). Since 
R(u1) > 0 and R(u2) is finite, R(u2) is positive and finite. Let r = R(u2). Since R(uC

r ) = r , the 
agent uC

r likes information better than agent u2 does, by Theorem 1; hence the former accepts a2

at any wealth level. By Lemma 2 this means that r ≤ NV(a2), and hence also r ≤ NV(a1), so 
that uC

r also accepts a1 at any wealth level. Since R(u1) ≤ r = R(uC
r ) and u1 likes information 

better than uC
r (also by Theorem 1), it follows that u1 accepts a1 at wealth level w1. �

5. The demand for information

In this section we show that, in our settings, the normalized value of an information purchase 
is useful for characterizing the demand for information, namely, the set of agents who are willing 
to go ahead with any given information purchase. The first result in this section shows that if 
the minimum coefficient of absolute risk aversion of an agent over all levels of wealth is greater 
than the normalized value of information, she rejects a purchase independently of her wealth. On 
the other hand, if the maximum coefficient of absolute risk aversion of an agent over all levels of 
wealth is smaller than the normalized value of information, she accepts a purchase independently 
of her wealth. The next theorem follows:

Theorem 3. Consider an information purchase a and an agent u ∈ U .

1. If R(u) > NV(a), then agent u rejects a at all wealth levels.
2. If R(u) ≤ NV(a), then agent u accepts a at all wealth levels.

This simple but important result follows immediately from Lemma 2 and from the first direc-
tion of Theorem 1. This is so because an agent with R(u) ≤ r is uniformly less risk averse than 
a CARA agent with risk aversion r , and an agent with R(u) ≥ r is uniformly more risk-averse 
than a CARA agent with risk aversion r .

Parts (1) and (2) of Theorem 3 characterize situations in our settings in which one can un-
equivocally say whether or not u accepts a, independent of what one knows about the agent’s 
wealth level. Whenever R(u) > NV(a) ≥ R(u), it may be the case that agent u accepts a for 
some wealth levels, and rejects it for other wealth levels. This observation makes it clear why the 
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normalized-value index NV(a) is not a universal representation of preferences for information 
purchases. It is important to note that this is true only because of such wealth effects.

Another way to look at this result is the following. Imagine that it has been estimated econo-
metrically that the agents in this economy have a coefficient of risk aversion ρu(w) ∈ [γ1, γ2] for 
all relevant w. Then, given an information structure α, one can identify two prices, μ1 and μ2, 
as follows:

γ1 =NV(μ1,α), γ2 =NV(μ2,α),

where μ1 and μ2 offer the following interpretation: for prices μ > μ1, the information pur-
chase (μ, α) will be unanimously rejected, whereas for prices μ < μ2, the purchase will be 
unanimously accepted. This is the sense in which, for all information structures, the index of nor-
malized value allows one to identify the minimum and maximum prices for individuals within a 
group whose coefficients of risk aversion are known or at least have been estimated.

More can be said for the case when u is DARA. For DARA utilities, the next result character-
izes utility functions that exhibit unanimous acceptance and unanimous rejection of a purchase. 
(The proof is also in the appendix).

Theorem 4. Consider an information purchase a and the class of utility functions UDA.

1. An agent u ∈ UDA rejects a at all wealth levels if and only if R(u) > NV(a).
2. An agent u ∈ UDA accepts a at all wealth levels if and only if R(u) ≤ NV(a).

5.1. Examples and calibrations of the model

This subsection illustrates the results derived for the demand for information. It presents some 
calibrations of the model in order to gauge the magnitudes implied by the index. Of course, this 
is meant to be only suggestive, and is far from constituting a careful empirical analysis.

According to Dohmen et al. (2011), “Lottery responses and wealth information imply a dis-
tribution of CRRA coefficients mainly between 1 and 10.” People in the lowest quartile of the 
wealth distribution in most developed countries has zero or negative net worth (Sierminska et al., 
2006) and the wealth of the highest decile ranges from 0.36 (Italy) to 1.81 (Germany) million 
US$ (with the US being around 0.95). However, these figures include very young people who 
have not yet had time to acquire any assets. If we use the median wealth instead, the figures go 
from about US$ 20,000 (Sweden) to about US$ 120,000 (Italy), with the US being at about US$ 
50,000. This means that a large fraction of the risk aversion of the population in the developed 
world can be characterized with R(u) = 5 × 10−4 and R(u) = 1.8 × 10−6.

Example 3. Let a be an information purchase about a binary state of the world (e.g., whether 
or not the US will be in recession in 2020) where the two states are equally likely a priori. The 
information structure α consists of two signals. Conditional on 1 being received, the probability 
of a recession is β , and conditional on signal 2 arriving, the probability of recession is 1 − β . 
Then, computation gives:

NV(a) = 1
μ

ln
(

2 (β (1 − β))1/2
)

.

Thus, the information purchase a = (μ, α) is accepted by all agents considered, if its price μ
satisfies
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Fig. 1. Maximum and minimum prices at which information is purchased by agents in the economy as a function of 
signal precision β .

μ ≤ − ln
(

2 (β (1 − β))1/2
)

× 2 × 103.

The same information purchase is rejected by all agents considered, if:

μ > − ln
(

2 (β (1 − β))1/2
)

× 5.5 × 105.

In Fig. 1, for every value of β , the information purchase is rejected by all agents considered, if 
μ is above the upper curve, and accepted by all agents considered, if μ is below the lower curve.

Of course, both ranges in the previous example are relatively large, since they separate the case 
in which a large portion of the world population would accept a purchase from the case in which 
only a few people might. Note, however, that these ranges provide realistic figures, given that it is 
not hard to think of pieces of information with a higher price than the maximum bound, or with a 
lower price than the minimum bound. For example, on its website, the Australian Securities and 
Investments Commission says this about financial advice: “The cost of the advice will depend 
on its scope. As a guide, expect to pay between $200 and $700 for simple advice and between 
$2000 and $4000 for more comprehensive advice.”14 This fits nicely with the figures in our last 
example. Future research might be able to provide a more precise range for information prices 
as a function of risk aversion estimates and of different pieces of information, always under the 
assumption of frictionless financial markets that allow large investments

6. Some properties of the index

We now discuss some properties of our index for the normalized value of information.15

14 Taken from: https :/ /www.moneysmart .gov.au /investing /financial-advice /financial-advice-costs.
15 Some of the proofs and more properties can be found in the appendix. Additional properties and examples can be 
found in the working paper version available at: http :/ /ideas .repec .org /p /cte /werepe /we1224 .html.

https://www.moneysmart.gov.au/investing/financial-advice/financial-advice-costs
http://ideas.repec.org/p/cte/werepe/we1224.html
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6.1. Continuity

The normalized-value index NV is jointly continuous in μ, in pα , and in (qs
α)s on the domain 

of nonexcluding information purchases. Continuity is a natural and attractive property: small 
changes in either the price or the conditional probabilities of signals should translate into small 
changes in the normalized value of the purchase. By “continuity at infinity,” NV(a) is infinite if 
and only if a is excluding.

6.2. Blackwell monotonicity

The normalized-value index is Blackwell-monotonic, as expressed in the following observa-
tion:

Observation 1. If an information structure α1 is more informative than another information 
structure α2 in the sense of Blackwell, then for any price μ > 0, the information purchase (μ, α1)

is more valuable than the information purchase (μ, α2). Thus, we have:

NV(μ,α1) ≥ NV(μ,α2).

This observation shows that the complete ordering defined by the normalized value is an ex-
tension of Blackwell’s ordering over information structures evaluated at the same price. Since the 
normalized value is a new ordering, this is also a new result. Our simple proof of the observation 
does not rely on the analytical form of the normalized value function, but rather on its axiomatic 
underpinning.

6.3. Mixtures

A third property concerns what happens when an information structure is constructed by 
randomizing over two other ones. Given information structures α1, α2, and 1 > λ > 0, we let 
λα1 ⊕ (1 − λ)α2 be the information structure in which (i) a coin toss determines whether the 
agent’s signal is chosen from α1 (with probability λ) or from α2 (with probability 1 −λ), and (ii) 
the agent is informed of both the outcome of the coin toss and the signal drawn from the chosen 
information structure. Formally, the set of signals in λα1 ⊕ (1 − λ)α2 is Sα1 ∪ Sα2 (where we 
assume that Sα1 and Sα2 are disjoint), and the probability in state k that the agent receives signal 
s ∈ Sα1 is λα1,k(s), whereas the probability of a signal s ∈ Sα2 is (1 − λ)α2,k(s).

Observation 2. Consider μ > 0 and α1, α2 such that NV(μ, α1) ≥ NV(μ, α2). For every 1 >
λ > 0, we have:

NV(μ,α1) ≥ NV(μ,λα1 ⊕ (1 − λ)α2) ≥ NV(μ,α2).

Thus, quite naturally, the normalized value of the “mixed” information purchase lies between 
the normalized value of the most valuable one and that of the least valuable one. Here again, the 
comparison of the values of the normalized index stems naturally from the “more valuable than” 
ordering.
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6.4. Comparison with average relative entropy

So far we have seen that two intuitive properties of the index NV are that it is (i) a decreasing 
function of its price, and (ii) an increasing function of the relative entropy from the prior to 
each generated posterior. In this light, it is interesting to compare the normalized value with the 
following index, which simply averages out all generated relative entropies:

Â(a) = 1

μ

∑
s

pα(s)d(p‖qs
α).

It is apparent that this index shares those two properties, and also satisfies separability in the form 
of price homogeneity. The next example shows that the two indices are, however, fundamentally 
different. Indeed, the example highlights the essential nature (for the ordering of purchases) of 
the combined operation of the exponential function and its compensating logarithm as a “blow 
up/shrink down” of relative entropies. The exponential function with negative exponents, which 
is bounded above, avoids the problem of infinite relative entropies attached to a single signal. 
Only when all relative entropies are infinite does the logarithm restore an infinite normalized 
value. This property is essential in order to satisfy the duality between uniform preferences for 
information and the proposed function ranking the normalized value of purchases.

Example 4. Let K = {1, 2, 3} and fix a uniform prior. Consider, for instance, two information 
structures, each of which has two signals:

α1 =
⎡
⎣ 0 1

1/2 1/2
1/2 1/2

⎤
⎦ , α2 =

⎡
⎣1 − ε ε

1/2 1/2
ε 1 − ε

⎤
⎦

Each row represents the probability of each signal under each possible state: 1, 2, 3.
Fix an arbitrary μ > 0, and define the purchases a1 = (μ, α1) and a2 = (μ, α2). Note that 

Â(a1) is infinite because the relative entropy of the prior to the posterior generated by the first 
signal is infinite. On the other hand, for any ε > 0, Â(a2) is finite. We next argue that the nor-
malized value of the purchases is not well measured by Â. Indeed, for a small enough ε > 0, the 
purchase a2 is almost excluding, and hence, in such a case r1 = NV(a1) < NV(a2) = r2. Here, 
r1 and r2 are the risk-aversion coefficients of the two CARA individuals who define the two 
corresponding levels of normalized values. Let r = (r1 + r2)/2. Clearly, the CARA agent r uni-
formly likes information better than the CARA agent r2: the CARA agent r2 accepts a2, which 
according to the index Â would be less valuable than a1; but agent r , who likes information 
more, rejects a1. This suggests that Â is not measuring value of information well.

6.5. Comparison with entropy informativeness

Several authors (Kelly, 1956; Arrow, 1971; Cabrales et al., 2013) have proposed measuring 
the informativeness of a statistical experiment by the reduction of uncertainty on the state of 
nature, quantified by its entropy. The following example compares the rankings generated by our 
normalized index (when the price of the purchase is kept constant) and entropy informativeness.

Example 5. Let K = {1, 2, 3} with a uniform prior. Consider the following two information 
structures, where rows correspond to states of nature, columns to signals, and cells to the proba-
bility of the signal in the corresponding state:
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α1 =
⎡
⎣1 − ε1 ε1

1 − ε1 ε1
ε1 1 − ε1

⎤
⎦ , α2 =

⎡
⎣1 − ε2 ε2

0.1 0.9
ε2 1 − ε2

⎤
⎦ .

For ε1 and ε2 small enough, these information structures are not ranked according to Black-
well. To see this, note that α1 allows one to separate states 2 and 3 with greater precision than α2
does, while α2 allows one to statistically distinguish between states 1 and 2, which α1 does not.

Now let us compare the entropy informativeness for a normalized price of 1: NV(a1) for 
a1 = (1, α1) and NV(a2) for a2 = (1, α2):

NV(ai) = − 1

μ
ln

(∑
s

pαi
(s) exp(−d(p‖qs

αi
))

)
.

Taylor approximations give:∑
s

pα1(s) exp(−d(p‖qs
α1

)) � 2

3
ε

1/3
1 ,

∑
s

pα2(s) exp(−d(p‖qs
α2

)) � ε
1/3
2 .

If ε1 = ε2 and both are small enough, then NV(a2) < NV(a1). That is, both purchases are 
becoming almost excluding at the same rate, but a1 leads to almost eliminate one more state 
following the second signal, allowing the investor to make very aggressive bets against more 
states. On the other hand, if ε2 = ε2

1 and both are small, then NV(a1) < NV(a2). Namely, 
because of the different rates at which signal probabilities approach 0, a2 is becoming almost 
excluding much faster.

Let us now estimate the entropy reduction from the uniform prior, which we denote by Ie (·). 
Straightforward computation yields the following:

Ie (α1) � ln 3 − 2

3
(ln 2) � ln 3 − 0.46;

Ie (α2) � ln 3 − 1

3
(1.1 ln 1.1 − 0.1 ln 0.1 + 1.9 ln 1.9 − 0.9 ln 0.9)

� ln 3 − 0.55.

This implies that Ie(α1) > Ie(α2) whenever ε1, ε2 are sufficiently close to zero, as the gener-
ated posteriors by α1 eliminate a greater degree of uncertainty (note the difference between the 
two information structures in the second state).

To explore somewhat more systematically the difference between the index based on entropy 
and the one in this paper, we investigate conditions for purchases with small amounts of infor-
mation that renders them equivalent. Let ai = (μ,αi). We then have the following equations:

NV(ai) = − 1

μ
ln

(∑
s

pαi
(s) exp

(
−

∑
k

pk

(
lnpk − lnqs

αi
(k)

)))

Ie (αi) =
∑

s

pαi
(s)

(
−

∑
k

pk

(
lnpk − lnqs

αi
(k)

) −
∑

k

(
pk − qs

αi
(k)

)
lnqs

αi
(k)

)
.

The two previous expressions imply that, to a first-order approximation when qs is close to p,
αi
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NV(ai) � 1

μ

∑
s

pαi
(s)

(∑
k

pk

(
lnpk − lnqs

αi
(k)

)) ;

Ie(αi) �
∑

s

pαi
(s)

(
−

∑
k

(
1 + lnqs

αi
(k)

)
pk

(
lnpk − lnqs

αi
(k)

))
.

As a result, it follows that:

NV(ai) � 1

μ

∑
s

pαi
(s)

(∑
k

pk

(
lnpk − lnqs

αi
(k)

))
(2)

and

Ie(αi) �
∑

s

pαi
(s)

(
−

∑
k

(
1 + lnqs

αi
(k)

)
pk

(
lnpk − lnqs

αi
(k)

))
. (3)

A comparison of expressions (2) and (3) makes it clear that when priors and posteriors are 
similar, the two indices point in the same direction – as long as it is also true that the qs

αi
(k)

vectors are all parallel to the unit vector and that lnqs
αi

(k) < −1, that is, when priors are close 
to uniform and there are more than two states. Otherwise, cases such as the one provided in 
Example (5), when posteriors are very informative, are likely to make the indices diverge.

6.6. On smaller investment sets

Theorem 2, which characterizes demand for information according to our normalized index, 
makes the assumption that B∗ consists of all no-arbitrage assets. We show here that this assump-
tion is not necessary, as long as the set of available investments is rich enough.

Consider an information purchase a = (μ, α), and assume that all posterior probabilities fol-
lowing α are in the interior of �(K). Depending on the signal s ∈ Sα received, let xr(s) ∈ B∗
be the optimal investment for a CARA agent with parameter r given the agent’s posterior belief; 
also let Xr(a) = {xr(s), s ∈ Sα}.

We now consider an arbitrary set B of no-arbitrage assets, which is not necessarily the full 
set B∗. All definitions, including “a1 is more valuable than a2” extend to the context in which 
acceptance of an information purchase depends on the set of available assets. The two results 
that follow provide counterparts to Theorem 2, while relaxing the assumptions made on the set 
of available assets.

Proposition 1. Consider two information purchases a1 and a2, and assume that NV(a1) ≥
NV(a2). If B contains Xr(a1) for some r ∈ [NV(a2), NV(a1)], then a1 is more valuable than 
a2 given the investment set B .

Proof. Assume agent u2 accepts a2 at wealth w2, given the available set B . Agent u2 also accepts 
a2 at w2 if B∗ is available; hence, R(u2) ≤ NV(a2) ≤ r ≤ NV(a1). A CARA agent with risk 
aversion r accepts a1, given either B∗ or B , since only investments in B are chosen by this agent. 
Now, any agent u1 who likes information better than u2 satisfies R(u1) ≤ r . Hence, this agent u1
also accepts a1 given B . �

The following is an extension of the converse part of our main result:
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Proposition 2. Consider two information purchases a1 and a2, and assume that a1 is more valu-
able than a2 given some investment set B . If B contains BNV(a2)(a2), then NV(a1) ≥ NV(a2).

Proof. A CARA agent with risk aversion NV(a2) accepts a2 under B . Thus, this same agent 
accepts a1 under B , which implies that she also accepts a1 under B∗, which implies that 
NV(a2) ≤ NV(a1). �

Of course, in general, rankings of information purchases may depend on investments avail-
able. But, as shown by the previous results, as long as enough investments are available, the 
ranking between any two information purchases is unambiguous, and is represented by our 
normalized-value index.

7. Related literature

The classical approach to ranking information structures is due to Blackwell (1953).16 How-
ever, this approach does not provide a complete ordering of information structures. For an 
information structure to be more informative in the sense of Blackwell than another one, it must 
be the case that agents (weakly) prefer the former over the latter no matter what their preferences 
are. More recent research has focused on restricting preferences to a particular class. For exam-
ple, Lehmann (1988) restricts attention to problems with monotone decision rules, and Persico 
(2000), Athey and Levin (2001), and Jewitt (2007) focus on some more general classes of mono-
tone problems.17 The main difference between this line of research and our approach is that we 
provide a complete order through a duality axiom for problems with a restricted set of investment 
opportunities.18

Working independently, several authors (Kelly, 1956; Arrow, 1971; Cabrales et al., 2013) have 
studied a complete ordering of information structures, indexed by the reduction of uncertainty on 
the state of nature due to the signal, as measured by entropy. All three papers hinge on the fact 
that entropy measures the value of information for a logarithmic utility investor. Arrow (1971)
simply assumes such an investor. Kelly (1956) shows that when investment opportunities are 
repeatedly available, the betting strategy that maximizes the growth of long-run wealth is the one 
that maximizes instantaneous expected logarithmic utility. Cabrales et al. (2013) measure the 
value of an information source by the maximal price that an agent in the economy is willing to 
pay to access it, and the logarithmic agent is characterized as having the maximum willingness 
to pay for information.19, 20

The present paper departs from this literature in several ways. First, we offer a way to mea-
sure not just information, but an information purchase, thus adding the price of information into 
the object of study. To the best of our knowledge, ours is the first index capturing this tradeoff. 

16 Veldkamp (2011) shows the many ways in which economists have measured informativeness and their applications.
17 Measuring information is even harder if several agents interact, as shown, for instance in, Gossner (2000), Gossner 
and Mertens (2001), and Lehrer and Rosenberg (2006).
18 Moscarini and Smith (2002); Azrieli (2014), and Ganuza and Penalva (2010) also study partial orderings of informa-
tion structures in various environments.
19 This is related to the fact that this is also the least risk-averse agent in the economy considered.
20 Samuelson (1969) had already discussed Kelly (1956) and the properties of logarithmic utility investing, and Blume 
and Easley (2002) the potential for the dominance in a market in the long run of “Kelly investors”. A good summary 
on “Kelly investing” is MacLean et al. (2011). Cesa-Bianchi and Lugosi (2006) note the formal equivalence between 
sequential gambling and forecasting under the logarithmic loss function.
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Second, a perhaps more important argument is that in our methodology, instead of studying the 
value of information to one particular agent, we obtain an index that captures demand for infor-
mation, in the sense that larger values of the index correspond to larger sets of agents accepting 
the corresponding purchases.

Prior literature has investigated the relationship between risk aversion and demand for infor-
mation. Freixas and Kihlstrom (1984) study an environment in which a consumer with CARA 
preferences decides which variety of a horizontally differentiated good to consume. The con-
sumer can obtain a normally distributed signal that would add precision to her knowledge. The 
paper shows that the willingness to pay for information in that environment decreases with risk 
aversion.21 Eeckhoudt and Godfroid (2000) assert at the beginning of their paper, “It is widely 
believed among economists and businessmen that increases in risk or in risk aversion should 
increase the value of information for decision-makers.” Then they provide an example of a deci-
sion problem in which the optimal decision in the absence of information is not to invest, and in 
which the value of information falls with increasing risk aversion. We view our work as provid-
ing a general framework for thinking about the demand for information, and thereby extending 
further the logic of their example.

Finally, our approach to ranking information purchases is based on a ranking of preferences 
for information. Relatively few papers in the literature deal with the comparison of different 
agents’ preferences for information. One such study is Grant et al. (1998), which explores intrin-
sic preferences for information, that is, preferences that are unrelated to the fact that information 
can lead to more profitable decisions. This is very different from our framework, since our agents 
like information precisely because it helps them to make better decisions. But, interestingly, just 
as we found (see Theorem 1) that risk aversion is related to preferences for information, Grant et 
al. (1998) find that their notion of Information Loving is related to the convexity of preferences.

8. Conclusion

There are multiple ways to index information, but ours is the first index that captures the 
information-price tradeoff, by indexing information purchases. Our normalized-value index is 
based on a duality principle (as in Aumann and Serrano (2008)) between value and preference 
for information in settings in which the investment opportunities are described by a no-arbitrage 
condition. Because no-arbitrage assets provide a clean way to measure the value of information, 
we have been able to extend their use from such previous studies as (Kelly, 1956; Arrow, 1971; 
Cabrales et al., 2013). The result we offer here can be viewed as a translation of Aumann and 
Serrano (2008) to informational settings with no-arbitrage investments. In such settings, the new 
index captures an aspect of the demand for information in a market economy. Our paper has 
characterized agents’ demand for information using a simply computable number called the nor-
malized value of the information purchase, which relates to agents’ risk aversion. For practical 
applications, one can rely on some of the known estimates for risk aversion levels provided in 
the literature in order to identify prices at which every agent–no agent–will accept that infor-
mation purchase. In this way we can describe a useful inverse demand curve for information in 
no-arbitrage investment settings. In our analysis, the asset prices were exogenous. Prices could 
also be an endogenous function of the information agents gather. This would have an impact on 

21 Alepuz and Urbano (1995) study the experimentation problem of a monopolist who is trying to learn the slope of her 
(linear) demand. They show that for small experimentation costs, CARA agents who are more risk-averse experiment 
less than do less risk-averse agents.
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the demand for information. We have ignored such considerations, present in the noisy rational-
expectations literature. Combining them with the normalized-value notion developed here could 
be an interesting future research agenda.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2017.05.007.
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