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Abstract. We study the value of information in zero-sum games.

1. Introduction

Blackwell. Extension to n players doesn’t hold. Zero-sum games natural gener-
alization.

• A decision maker against an adversary nature is modelled by a zero-sum
game

• Zero-sum games have a value (minmax) theorem, which eases compara-
tive statics among information structures 3/ A consequence of the minmax
Theorem is that more information can only be beneficial in zero-sum games.

This opens a series of questions.

2. Model and Results

Information schemes and games. For any Hausdorff space X , BX denotes its
borel σ-field. The set of states of nature K is a Hausdorff space endowed with BK.

Definition 1. An information scheme E = (E, E , (Ei), P, κE) is given by

• a probability space (E, E , P )
• two sub σ-algebras E1 and E2 of E.
• a P -measurable map κ : (E, E , P ) → (K,BK) s.t. P ◦ κ−1 is tight.

Definition 2. A pay-off function g is a bounded continuous map g : A1×A2×K →
R, where A1 and A2 are player 1 and player 2’s compact action spaces.

K is the “parameter space” of the statisticians, and g is the equivalent of the
decision problem. A “state of the world” in E describes players’ information on
K, but also their whole hierarchies of beliefs on K, as well as potential correlated
information they may receive.

[g,E] denotes the extended (two person zero-sum) game in which initial infor-
mation of the players and the true state of nature are initially generated by E, next
players choose actions in A1 and A2, and finally pay-offs (to player 1) are deter-
mined by g. We rely on the following version of the minmax Theorem. From [? ,
4.3 p. 133] — cf. also below, after prop. 23:

Theorem 3. The game [g,E] has a value, denoted vg(E), and there are optimal
strategies.

The formalism allows to vary separately the information scheme and the game.
It allows us to study how changes in the information structure affects values accross
games.
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2.1. Ordering of information schemes. We now introduce basic relationships
between information schemes.
First, decreasing i’s information:

E Di E
′ (i = 1, 2) when E = E′ except for E ′

i ⊆ Ei.
The decrease may be immaterial, hence an equivalence (sufficiency):

E Si E
′ (i = 1, 2) when E Di E

′ and P (A|Ei) is E ′
i-measurable ∀A ∈ Ej∨κ−1(BK)

(j 6= i).
A decrease in the σ-algebra on states of the world is immaterial, hence we con-

sider it as an equivalence:
E D E′ when E = E′ except for E ′ ⊆ E
Finally, inclusion of an information scheme into another is the equivalence in

which a zero probability common knowledge event is deleted:
E I E′ when E ∈ E ′

1 ∩ E ′
2 with P ′(E) = 1 and E = E′

|E

For two binary relations U and V , we denote UV and U−1 the constructed binary
relations:

X UV Y ⇐⇒ ∃Z,X U Z and Z V Y

X U −1Y ⇐⇒ Y U X

We are interested in those relations between information schemes that (weakly)
improve player 1’s situation in 2-person zero-sum games. We thus consider chains
of relations that consist of increasing player 1’s information, decreasing player 2’s
information, and of equivalences.

Definition 4. Let 4 be the relation between information schemes induced by any
finite sequence of I, I−1, D, D−1, D−1

1 , D2, S1, and S−1
2 .

The following relation means that there exists a f aithful relation from E to F

(see [? ], also thm ...).

Definition 5. We let E F F when there is a commutative diagram

(1)

E
d1−−−−→ E1yd2

ys2

E2
s1−−−−→ F

where di is a Di map and si a Si map. (I.e., F = D1S2 ∩ D2S1.)

Since D1S2 weakly worsens player 1’s situation, while D2S1 weakly improves it,
F neither improves nor weakens player 1’s situation. It can therefore be considered
as an equivalence.

Based on these relations, we now consider chains consisting of decreasing only
one of the player’s information as well as equivalences.

Definition 6. Let 41 be defined as 4 except that D2 (and S1) cannot be used, but
F can. Similarly, let 42 be defined as 4 except that D−1

1 (and S−1
2 ) cannot be used,

but F−1 can. Finally, ∼ is defined as 4 except that D−1
1 , S1, D2 and S−1

2 cannot
be used, but F and F−1 can.

Points 1 – 5 in the Theorem below relate those orderings, while point 6 expresses
monotonicity of the value w.r.t. information. Note that point 1 follows straight from
the definitions.

Theorem 7. (1) 4, 41, 42 and ∼ are transitive and reflexive, and ∼ is sym-
metric.
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(2) Those relations are represented by:
(a) 4 = D−1F−1IFDD−1F−1I−1D2D

−1
1 IFDD−1F−1I−1FD

(b) 41 = D−1F−1IFDD−1F−1I−1D−1
1 IFDD−1F−1I−1FD

(c) 42 = D−1F−1IFDD−1F−1I−1D2IFDD−1F−1I−1FD

(d) ∼ = IFDD−1F−1I−1IFDD−1F−1I−1FD

(3) 41 and 42 commute.
(4) 4 = 4142

(5) ∼ is the equivalence relation induced by any of the three orders, i.e. E ∼ F

iff E 4 F and E < F.
(6) All functions vg(·) are 4-monotone.

In order to characterize the equivalence classes for 4, we need a few additional
tools, introduced in the next section.

Universal beliefs spaces, and consistent priors. We recall a couple of defini-
tions and properties from [? , ch. III].

For any Hausdorff space X , ∆(X) denotes the (Hausdorff) space of tight prob-
ability measures on BX.

A beliefs system [? , comment 1.1 p. 110] is pair of Hausdorff spaces (Σ1,Σ2)
together with continuous maps σi : Σi → ∆(K × Σ−i) (i = 1, 2).

The universal belief space (ibid.) is a beliefs system (Θi, θi)1,2 such that for every
beliefs system (Σi, σi)1,2, there exist continuous maps (φi)1,2 such that the following
diagrams commute:

Σi ∆(K × Σ−i)

Θi ∆(K ×Θ−i)

σi

θi

φi id. φ−i

Then, the φi are unique.
The universal beliefs space always exists, the θi are then homeomorphisms, and

Θi is “unique” [? , thm. 1.1 p. 107].
Let Ω = K ×Θ1×Θ2 be right name for this space ?, and for P ∈ ∆(Ω), denote

by Pi its marginal on Θi.
P is consistent iff P (B) =

∫
θi(B)Pi(dθi) (i = 1, 2) ∀B ∈ BΩ [? , def. 2.1 p. 119].

Denote by Π the space of consistent priors. Π is closed and convex [? , thm. 2.3
p. 120].

Any Q ∈ ∆(Ω) is identified with the information scheme EQ =
(Ω,BΩ, Q, (Ti)1,2, κ), where Ti is the σ-field spanned by BΘi, and κ : Ω → K is
the projection map. For Q ∈ Π such information schemes are called canonical.

Further, for any information scheme E, there exists a unique corresponding
PE ∈ Π, with a “unique” map from E to Ω [? , thm. 2.5 p. 122].

For µ ∈ ∆(Θ1), define Qµ by Qµ(dθ1, dθ2, dk) = θ1(dθ2, dk)µ(dθ1), and let ∆b(Θ1)
be the set of µ ∈ ∆(Θ1) such that the marginal of Qµ on K is tight. For µ ∈ ∆(Θ1),
Pµ represents the consistent prior PEQµ

[? , def. 4.9 p. 135]. Define similarly ∆b(Θ2)

and Pν for ν ∈ ∆b(Θ2).

Theorem 8. Π is the set of equivalence classes of 4. i.e., E1 ∼ E2 iff PE1
= PE2

.

Corollary 9. 4 and the 4i induce orders (i.e., anti-symmetric) on Π.

Corollary 10. ∀g, vg becomes a function on Π (i.e., vg(E) = vg(PE) ∀E).
The functions vg are continuous and affine on Π.

Proof. The first sentence follows from theorem 7, point 6 and corollary9. For the
second, cf. [? , prop. 4.4 p. 133]. �
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Theorem 11. For K completely regular, the functions vg (with finite action sets)
span the topology on Π.

Analytic characterizations.

Theorem 12. For P and Q in Π, P 4 Q (resp. P 41 Q, P 42 Q) iff there exists
R ∈ ∆(Ω × Ω′) (where Ω′ = K ′ × Θ′

1 × Θ′
2 is a copy of Ω) with P and Q as first

and second marginals and s.t.:

(1) the support of R is contained in the diagonal of K ×K ′

(2) Ω and Θ′
2 are conditionally independent given Θ2

(3) Ω′ and Θ1 are conditionally independent given Θ′
1

(4) for 41: Ω′ and Θ2 are conditionally independent given Θ′
2

for 42: Ω and Θ′
1 are conditionally independent given Θ1

Corollary 13. Assume K completely regular. Then the graphs of 4, 41 and 42

in ∆(Ω)×∆(Ω) are closed and convex.

Corollary 14. For K completely regular, any monotone net in Π for 4, 4i, and
the opposite orders converges, and the monotonicity is preserved at the limit.

Remark that in the 1-person situation, and if K were a separable metric space,
the martingale convergence theorem would imply that, when the player is faced
with an increasing or a decreasing sequence of σ-fields of observations (on the same
sample space), his posteriors would converge a.s. to the limiting posteriors. Here
our observations are not on the same sample space, so there would be no meaning
even to a convergence in probability: the convergence has to be weakened to a con-
vergence in distribution: all the sharpness of the martingale convergence theorem
is gone. But given that, we obtain a generalization to 2 players, with any of the
orders, with arbitrary nets instead of sequences, and arbitrary completely regular
spaces.

Corollary also shows that our definition of the orders using finite chains of basic
relations was right: infinite chains would not yield anything more.

The following Theorem shows how 4 on canonical information structures can be
obtained by degrading the information of player 1, then augmenting that of player
2.

Theorem 15. P 4 P ′ iff ∃Q ∈ Π s.t.

(a) there exists a transition probability ρ from Θ2 to Θ′
2 s.t., with E the infor-

mation scheme on Ω×Θ′
2 with P⊗ρ where player 2 is informed (only) of θ′2,

PE = Q. And then ρ can be chosen such that the above “unique map” from E

to Ω induces the identity on Θ2, more precisely, define g P1 measurable from
Θ1 to (Θ1,BΘ1) such that P1-a.e. g(θ1)[dθ2, dk] =

∫
Θ̃2

ρ(dθ2|dθ̃2)θ1(dθ̃2, dk),

then if h denotes the “unique” map ∀B ∈ BΘ1 ⊗ BΘ2 ⊗ BK, h−1(B) =
(h× IΘ2

× IK)−1(B) P ⊗ ρ a.e., where IΘ2
is the identity map from Θ′

2 to
Θ2.

and dually:

(b) there exists a transition probability ρ′ from Θ1 to Θ′
1 s.t., with E′ the infor-

mation scheme on Ω×Θ′
1 with P

′⊗ ρ′ where player 1 is informed (only) of
θ′1, PE′ = Q and

∫
ρ′dP ′

1 = Q1. And then . . .

or equivalently:

(a’) there exists µ ∈ ∆(Θ2) such that
∫
φdµ ≤

∫
φdP2 for every convex l.s.c.

function φ on Θ2 which is bounded below, and such that Pµ = Q.1

1The first condition ensures that µ ∈ ∆b(Θ2), and in particular Pµ is well defined
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(b’) there exists ν ∈ ∆(Θ1) such that
∫
ψdν ≤

∫
ψdP ′

1 for every convex l.s.c.
function ψ on Θ1 which is bounded below, and such that Pν = Q.

Corollary 16. A function v on Π is (4)-monotone iff it is

(a) monotone w.r.t. 2: ∀P ∈ Π, ∀µ ∈ ∆(Θ2),
∫
φdµ ≤

∫
φdP2 ∀φ convex l.s.c.

on ∆(Θ2) ⇒ v(P ) ≤ v(Pµ)
(b) and similarly, monotone w.r.t. 1: ∀P ∈ Π, ∀ν ∈ ∆(Θ1),

∫
φdν ≤

∫
φdP1 ∀φ

convex l.s.c. on ∆(Θ1) ⇒ v(Pν) ≤ v(P )

Monotonicity w.r.t. 1 [resp. 2] corresponds to the classical convexity (w.r.t. 2)
[resp. concavity w.r.t. 1] found in repeated games with incomplete information.
And they strengthen the tentative generalizations of concavity and convexity at
the end of [? , ch. III].

3. Proofs

3.1. Functorial aspects of consistent priors. For a “paving” P (a set of sub-
sets of a set X), Pσ, Pδ and Pc denote the pavings consisting respectively of the
countable unions, the countable intersections and the complements of elements of P;
Pσδ = (Pσ)δ, and so on. IfX is a topological space, Z denotes the paving of zero sets,
i.e., sets f−1(0) for f real-valued and continuous, and K that of compact subsets.

For beliefs spaces, functorial properties were obtained in [? , thm. 1.2 p. 111].
We will need analogous properties for consistent priors of point 3 there (point 1 is
dealt with in cor. 2.4 p. 120 loc. cit., and, as to point 2, consistent priors are only
defined on the universal beliefs space).

Proposition 17. Assume K1, K2 Hausdorff. For f : K1 → K2 continuous, let
Ω(f)

def
= f ×Θ1(f)×Θ2(f) : Ω(K1) → Ω(K2), and Π(f)

def
= ∆(Ω(f))|Π(K1).

(1) The transpose Ω∗(f) of Ω(f) embeds C(Ω(K2)) into C(Ω(K1)), as Banach
algebras, and commutes with the θi as operators from C(Ω(K.)) to itself.

(2) For K compact, C(Ω) is the smallest closed algebra A containing C(K) and
s.t. θi(f) ∈ A (i = 1, 2) ∀f ∈ A.

For any information scheme E about K1, let f ◦E be the information scheme about
K2 obtained by replacing κ1 in E by f ◦κ1, and T (f) : E → f ◦E be the identity on E.

(3) Π(f) : Π(K1) → Π(K2) is continuous, and the following diagram commutes
(a.e.), the maps φi being as in [? , thm. 2.5 p. 122], — so Π(f)(PE) = Pf◦E:

E
T (f)

−−−−→ f ◦ E
yφ1

yφ2

PE

Ω(f)
−−−−→ Pf◦E

(4) If f : K1 → K2 is one-to-one, or an inclusion (of a closed subset, of a
Z-subset, of a Zcδ-subset), so is Π(f) : Π(K1) → Π(K2). In case of an in-
clusion, K1 ⊆ K2, one has more precisely Π(K1) = Π(K2) ∩∆(Ω(K1)) =
{Q ∈ Π(K2) | (Q ◦ κ−1

2 )(K1) = 1 }.
(5) For K1 K-analytic, if f : K1 → K2 is onto, so is Π(f).

Proof. 1: Follows immediately from property (P ) [thm. 1.1.1 p. 107 in ? ].
2: Suffices by Stone-Weierstrass to show that A separates points, and hence that

it separates points of all Ωn’s (= Ω with the hierarchies of beliefs truncated at level
n [cf. ? , thm. 1.1.3 p. 108]). This follows by induction: it holds by definition for
Ω−1 = K, and for the induction step, when knowing that we have all continuous
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functions f on Ωn (Stone-Weierstrass as above), those f will separate points of
∆(Ωn), hence in particular the θi(f) separate points of Θi,n+1.

3: Continuity of Π(f) follows by definition from that of Ω(f) [property (P ) in
thm. 1.1.1 p. 107 in ? ]; and that its values are contained in Π(K2) follows from the
last statement, applied to the canonical information schemes. As to that one, by
[? , thm. 2.5.2 p. 122], suffices to show that Ω(f) ◦ φ1 satisfies the requirements on
a φ2 in point 1 of that theorem, T (f) being the identity on E; continuity of Ω(f)
ensures the measurability and point 1b, point 1a is by definition of Ω(f) and of φ1,
while the left hand member in point 1c equals θi(φ1(e))

(
[Ω(f)]−1(B)

)
by property

(P ) loc. cit. and the right hand member equals P
(
φ−1
1 [(Ω(f))−1(B)] | Ei

)
(e) (by

definition), hence equality follows from point 1c loc. cit. for φ1.
4: By the corresponding result for Ω(f) [? , thm. 1.2.3a p. 111], 9.b.1 and 9.b.2

[? , p. 428] imply our conclusions, except:
(a) for the “more precisely”, remains to show that Q ∈ Π(K2), (Q ◦ κ−1

2 )(K1) =
1 ⇒ Q ∈ Π(K1), since the inclusions from left to right are now clear. Fix then
B ⊆ K1 in BK2 with Q(κ−1

2 (B)) = 1; using [? , thm. 1.2.3b p. 111] with B as K1,
we conclude that inductively Ai

n is borel and Q(Ai
n) = 1, hence Q(Ω(K1)) = 1 since

Ω(B) ⊆ Ω(K1) (point 3a loc. cit.), so Q ∈ Π(K2) ∩∆(Ω(K1)). Q ∈ Π(K1) follows
now straight from the definition of consistency.

(b) for the inclusion of a closed subset, of a Z-subset, of a Zcδ-subset, our con-
clusions are that ∆(Ω(K1)) is such a subset of ∆(Ω(K2)); the equality Π(K1) =
Π(K2) ∩∆(Ω(K1)) implies then the result.

5: ForQ ∈ Π(K2), choose µ ∈ ∆(K1) s.t. f(µ) = κ2(Q), using 9.b.3 in [? , p. 428].
Let ν denote the image of µ on the graph of f , and use [? , II.1Ex.16c p. 75] to
get a corresponding transition probability ρ from K2 to K1, i.e., ρ : K2 → ∆(K1)
is such that the inverse image of every borel set is κ2(Q)-measurable, the induced
probability on B∆(K1) is tight, and ν(B) =

∫
ρ(B|x)(κ2(Q))(dx) for all B in the

product of the borel σ-fields.
Q ⊗ ρ defines a tight distribution on Ω(K2) × K1; with the projection to K1,

this defines an information scheme E about K1: let P = PE, and Q′ = Π(f)(P ).
We must show that Q′ = Q. By (3), Q′ = Pf◦E, and f ◦ E is the (canonical)
information scheme Q (about K2), followed by the transition ρ to K1 and then f
from K1 to a copy K ′

2 of K2, and where the “state of nature” is generated from
the coordinate in K ′

2. There is no loss to extend this to a tight distribution on
Ω(K2) × K1 × K ′

2. We claim that this distribution is carried by the diagonal in
K2 × K ′

2. To prove this, suffices to take a pair of disjoint open sets O and O′ in
K2, and to prove that (κ2(Q)⊗ (f ◦ ρ))(O×O′) = 0. The left hand member equals∫
ρ(O × f−1(O′)|x)(κ2(Q))(dx), i.e., ν(O × f−1(O′)). Since ν is by definition car-

ried by the graph of f , we get indeed 0. The intermediate factor K1 (as well as the
factor K2) can be forgotten for computing the associated consistent prior since it
affects neither the true state of nature nor the information of the players. Thus our
distribution on K2×Θ1(K2)×Θ2(K2)×K ′

2 has Q as marginal on the first 3 factors,
and is carried by the diagonal in K2×K ′

2: its marginal on the last 3 factors is also
Q. So Q′ = Pf◦E is the canonical distribution associated to EQ: Q

′ = Q. �

Corollary 18.

(1) For K1 compact, if f is a quotient map, so are Ω(f) and Π(f).
(2) For K compact, and for a sequence fn of continuous functions on Ω, there is

a metrisable quotient K̄ of K s.t. the fn factor through the map Ω → Ω(K̄).

Proof. 1: Since any continuous map from a compact space onto a Hausdorff space
is a quotient map, this follows from point 5 of prop. 17.
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2: Consider, for each finite subset α of C(K), the smallest algebra Aα contain-
ing α and s.t. θi(f) ∈ Aα (i = 1, 2) ∀f ∈ Aα. By prop. 17.2,

⋃
αAα is dense in

C(Ω). We obtain thus a sequence αk, s.t. all fn are in the closure of
⋃

kAαk
. Then

the closed algebra C0 spanned by
⋃

kαk and the constants defines the metrisable
quotient K̄, with quotient map φ. The image of C(Ω(K̄)) by Ω∗(φ) contains all fn,
by prop. 17.1, since all operations to construct them from elements of C0 (algebra-,
θi(·), limits) are preserved by Ω∗(φ). �

Lemma 19. Let E 4 F be two information schemes about K. Assume f : K ′ → K
is continuous, and either an inclusion, with PE(K

′) = 1, or bijective, with K ′

K-analytic. Then E′ = f−1 ◦ E and F′ = f−1 ◦ F (with the obvious meaning —
cf. prop. 17) are well-defined information schemes about K ′, with E′ 4 F′, and
PE′ = PF′ iff PE = PF.

Proof. The schemes are well-defined: first, also PF(K
′) = 1, since E 4 F implies

they induce the same distribution on K. Next, for the inclusion, the definition as-
sumes that E′ = κ−1

E (f(K ′)), and use prop. 17.4 and 17.3. For the bijection, suffices
clearly to show that f−1 is universally measurable (à la Lusin). Now, by 9.b.3 in
[? , p. 428], every µ ∈ ∆(K) is the image by ∆(f) of some µ′ ∈ ∆(K ′). Then with
C a compact subset of K ′ with large µ′-measure, f(C) is compact in K with large
µ-measure, and f−1 is continuous on it: f−1 is µ-Lusin measurable.
PE′ = PF′ if PE = PF by prop. 17.4, and conversely, because E = f ◦ E′ and

F = f ◦ F′ (up to null sets in case of an inclusion, i.e., f ◦ E′ IS1S2D E, where the
last 3 operations only remove null sets.).

E′ 4 F′: since f ◦ E′ IS1S2D E which are equivalences, we can assume that
κE(E) ⊆ f(K ′), so now the schemes are strictly well-defined, and E = f ◦ E′. By
the same argument, all I, I−1,D,D−1,D−1

1 ,D2,S1,S
−1
2 in the chain are still such

operations when viewed as operating between the corresponding schemes about
K ′ (recall that sufficiency, being defined in terms of conditional expectations, is
unaffected by null sets). �

3.1.1. A modification of canonical information schemes. Assume P is a canonical
information scheme, then replacing BΩ by P = BK × BΘ1×Θ2 leads to a modified
canonical information scheme Cm

P such that P D Cm
P .

Lemma 20. For any information scheme E, there is a modified map φm : E → Ω
having the same properties as φ in [? , thm. 2.5 p. 122], except that BΩ is replaced
by P, and φm = (κ, φ1, φ2), where φi is Ei ∨ N -measurable to BΘi — N denoting
the σ-field of all negligible subsets of (E, E , P ).

Remark 21. So φm induces the modified canonical information scheme Cm
PE
.

Proof. [? , rem. 2.8 p. 126] proves the statement, except that the measurability of
φi is only obtained (from [? , thm. 2.5.1c p. 122]) as “φi(B) is Ei∨N -measurable for
every B ∈ P”. To conclude from this to our statement, observe that (by tightness)
it suffices to prove that φ−1

1 (C) is Ei ∨ N -measurable for any compact set C ⊆ Θ1.
Let then C′ be a compact subset disjoint from C: by the same argument, suffices
to show that there exists a borel subset B ⊇ C with B ∩ C′ = ∅ s.t. φ−1

1 (B) is
Ei ∨ N -measurable. Suffices thus to prove that every x 6= y there is such a borel
set B which is a neighbourhood of x and whose complement is one of y. Observe
that the proof that ∆(X) is Hausdorff for X Hausdorff rests on the fact that, given
µ1 6= µ2 ∈ ∆(X), there exist disjoint open sets O1 and O2, and αi ∈ R, α1+ α2 > 1
s.t. µi(Oi) > αi, so with Vi = {µ ∈ ∆(X) | µ(Oi) > αi }, V1 and V2 are disjoint
open sets in ∆(X) containing resp. µ1 and µ2. When taking (µ1, µ2) = (x, y), the
set V1 becomes our desired set B. �
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3.2. Values.

Proposition 22. Let Σ1, Σ2 be compact convex spaces, and Gn = ((Σi)i, gn) and
G = ((Σi)i, g) be zero-sum games (complete information). Assume all pay-off func-
tions gn, g are separately continuous in both arguments, quasi-concave in the first
and quasi-convex in the second, and such that (gn)n converges uniformly to g. Then:

(1) Values V (Gn), V (G) exist as well as optimal strategies in the corresponding
games, and limV (Gn) = V (G);

(2) If σi
n ∈ Σi is (ε-)optimal for player i in Gn and if limσi

n = σi, then σi is
(ε-)optimal in G.

Proof. The existence of values and optimal strategies follow by Sion’s theorem
[e.g., ? , theorem 1.6 p. 4]. For point 2, by the uniform convergence, and mono-
tonicity, increasing a bit ε allows to assume that gn = g ∀n. Then ∀τ, g(σn, τ) ≥
V (G)− ε ∀n⇒ g(σ, τ) ≥ V (G)− ε by the separate continuity. �

We will apply the above result via:

Proposition 23. For a game with incomplete information, endow each player i’s
strategy space Σi — the set of transition probabilities from (E, Ei) to his action space
Ai — with the “weak” topology, i.e., the weakest making continuous all integrals of
products of an integrable function on (E, Ei) with a continuous function on Ai.

Each Σi is then compact convex in a locally convex space, and metrisable if Ai

is so and (E, E , P ) is separable; and the pay-off, separately continuous.

Proof. Cf. first paragraph of the proof of ? , prop. 4.3 p. 133]. The metrisabil-
ity conclusion is then obvious, from the existence of a countable set of continuous
functions that separates points. �

Proof of thm. 3 and of thm. 7.6. Thm. 3 is immediate from the above. Thm. 7.6 fol-
lows then from the monoticity of values w.r.t. information, except for Si which is
also a classic argument, cf. e.g. the proof of prop. 4.5 p. 134 in [? ]. �

Proposition 24. E ∼ PE

Proof. Let φm be the modified map from E = (E, E , (Ei), κE, P ) to Cm
PE

=
(Ω,P , (BΘi), projK, PE) as in lemma 20.

Let Ec be E in which all σ-algebras are completed by elements of P probability
zero — hence E D−1S1S2 E

c —, and let F be obtained from Ec by replacing Ec
i by

Fi = φm,−1(BΘi). It follows from lemma 20 that Fi ⊆ Ec
i and that Fi is a sufficient

statistic for Ec
i on Fj ∨ κ

−1
E (K) (j 6= i), hence Ec F F.

First assume E∩Ω = ∅. Let G = E∪Ω, endowed with G = Ec∨P , Gi = Fi∨BΘi,
and κG = κE ∨ projK. Considering P and PE as probabilities on G, this defines
GP = (G,G, (Gi), κG, P ) and GPE

= (G,G, (Gi), κG, PE) such that F I GP and
Cm
PE

I GPE
.

We now connect GP to GPE
. First, decrease Gi to G′

i spanned by the sets
φm,−1(B) ∪ B, B ∈ BΘi, and next G to G′ spanned by the sets φm,−1(B) ∪ B,
B ∈ P . Note that κG is G′-measurable since φm is the modified map, and that
P and PE coincide on G′ (PE being the image of P by φm), hence denote the re-
sulting scheme by G0. Now, each element of Gi differs of an element of G′

i by an
element of Gi of P -probability 0, and by an element of Gi of PE-probability 0. Hence
GP S1S2D G0, and G0 D

−1S−1
1 S−1

2 GPE
.

If E ∩ Ω 6= ∅, let P ′
E be a copy of PE over a space Ω′ s.t. Ω′ ∩ Ω = Ω′ ∩ E = ∅.

The previous construction shows that E ∼ P ′
E ∼ PE. �
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3.3. Topological properties of strategy spaces.

Lemma 25. Let (gn) converge to g∞ in (L∞, σ(L∞, L1)). There exists a sequence
of convex combinations of (gn), g

′
k =

∑
nαk,ngn, such that:

• αn,k goes to infinity, i.e. for every n, limk→∞αn,k = 0.
• g′n converges to g∞ P a.s.

Proof. Let D be the set of convex combinations of (gn)n, and let D̄ be the clo-
sure of D for the Mackey topology τ(L∞, L1). Since D̄ is τ(L∞, L1) closed it is
also σ(L∞, L1) closed. Hence g∞ ∈ D̄. Recall that on bounded subsets of L∞,
τ(L∞, L1) coincides with the topology of convergence in probability (and also with
the L2 and L1 topologies). Since D̄ is bounded in L∞, the result follows by Egorov’s
theorem. �

Proposition 26. For X compact metric, there exists a borel map h from XN to X
such that h((xn)n) = x whenever xn converges to x.

Proof. First notice that the set C of converging sequences of elements of [0, 1] is
a borel subset of [0, 1]N. Indeed, for m ∈ N and ε > 0, let Fm,ε be the set of
sequences (yn)n ∈ [0, 1]N such that there exists n, n′ > n with |yn− yn′| > ε. Fm,ε is
open in [0, 1]N, and C is simply the complement of ∪k∈N∗ ∩m∈N Fm,1/k. Let (φi)i∈N

be a sequence of continuous functions from X to [0, 1] that separates points. A
sequence (xn)n ∈ XN converges if and only if for every i, (φi(xn))n ∈ C. Hence the
subset D ⊆ XN of converging sequences is borel. The mapping h from D to X that
associates its limit to every converging sequence is borel if and only if for every con-
tinuous function φ from X to [0, 1], φ◦h is borel. Since (φ◦h)((xn)n) = limnφ(xn),
it is enough to prove that the map l from C to [0, 1] such that l((yn)n) = limn yn
is borel. This last point comes from the fact that l is the limit of the sequence of
measurable “projection” maps pi : C → [0, 1] defined by pi((yn)n) = yi. �

Proposition 27. Fix an information scheme E = (E, E , (Ei)i, P, κE), compact met-
ric convex sets Ai, and (γn)n = ((Ai)i, gn)n and γ = ((Ai)i, g) s.t. all pay-off func-
tions (gn)n and g are separately continuous from A1 × A2 ×K to R, and concave
in the first argument, and s.t. (gn)n converges uniformly to g. For any sequence of
pure optimal strategies (σ1,n)n in Γ(γn,E), there exists a borel map f1 : (A1)

N → A1

such that the strategy σ1 defined by σ1(e) = f1(σ1,n(e)) is optimal in Γ(γ,E).

Proof. By prop. 22 and 23, extract a subsequence along which σ1,n converges, say
to σ1 (note that the sub-σ-field of E1 spanned by the σ1,n is separable); σ1 is then
optimal in Γ(γ,E). So there is a sequence of convex combinations of the unit masses
at the σ1,n s.t. those combinations converge, for a.e. e, weakly in ∆(A1) to σ1(e):
let gn be a dense sequence of continuous functions on A1, and take by lemma 25
for each n0 a convex combination of (δσ1,n

)n≥n0
which is, in L1(E,R

n0), 2−n0 close
to σ1 on each of g1 . . . gn0

; then a.s. those convex combinations converge to σ1 on
a dense set of continuous functions, hence weakly. Apply now prop. 26; since the
sequence of convex combinations of point masses is clearly a borel function on AN

1 ,
σ1(e) is a borel function of (σ1,n(e))n. Map finally each σ1(e) to its barycentre; this
is clearly borel, and still yields an optimal strategy by the concavity of the pay-off.
Let f1 be the composition of those two borel maps. �

3.4. Required information in a game.

Definition 28. Let γ be a game with compact metric action spaces and continu-
ous pay-off function, and E = (E, E , (Ei), P, κE) be an information scheme. The
sub-sigma-field Fi of Ei is required for player i in a game γ with action spaces (Aj)
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when for any optimal (behavioral) strategy σi of player i in γ extended by E, there
exists a map Fi from Ai to the set of probability measures on (E,Fi) such that:

• ∀X ∈ Fi, the map ai 7→ Fi(X)(ai) is measurable.
• ∀X ∈ Fi, (Fi ◦ σi)(X)(e) = 1X a.s.

where by definition, (Fi ◦ σi)(X)(e) =
∫
Ai
Fi(X)(ai)dσi(ai)(e).

Lemma 29. Let K be a separable metric space and γ a game with compact metric
Ai’s and continuous pay-off function. There exists a game γ′ with compact metric
A′

i’s and continuous pay-off function s.t., ∀i:

• In γ′, i has a unique best reply for each belief on K ×A′
3−i.

• For any information scheme E = (E, E , (Ei)i, P, κE) and sub σ-fields Fi of
Ei such that Fi is required for player i in γ extended by E, Fi is also required
in γ′ extended by E.

In particular, γ′ extended by E has P -a.s. unique optimal strategies.

Proof. First, consider the game γ̄ with action spaces Si = ∆(Ai) (with the
weak∗ topology) and pay-off function ḡ defined by ḡ(s1, s2, k) = Es1,s2g(a1, a2, k).
Choose strictly concave functions2 fi on Si, and define a sequence of “perturbed”
games γ̄n with action spaces Si and pay-off functions defined by ḡn(s1, s2, k) =
ḡ(s1, s2, k) +

1
n (f1(s1) − f2(s2)). For each belief on K × S3−i, each player i has an

unique best response in γ̄n. Hence in γ̄n extended by E, each player i has a pure
and P -a.s. unique optimal strategy σi,n. We finally define a game γ′ = ((A′

i)i, g
′)

in which the sequence of games (γ̄n)n is played simultaneously: A′
i = (Si)

N and
g′((s1,n)n, (s2,n)n, k) =

∑
n 2

−ng(s1, s2, k). The A′
i are compact metric (for the

product topology) and g′ is continuous. The unique optimal strategy for player i
in γ′ is σi defined by σi(e) = (σi,n(e))n.

We now prove that Fi is required in γ′ extended by E. Since the sequence of
pay-off functions (gn) converges uniformly to g, proposition 27 provides a measur-
able map fi from A′

i = SN

i to Si = ∆(Ai), thus a transition probability from A′
i

to Ai such that σi defined by σi(e) = fi((σi,n(e))n) is optimal in γ extended by E.
Now, Fi being required in γ, let Fi from Ai to (E,Fi) be as in definition 28. Then
Fi ◦ f is the required transition probability from A′

i to (E,Fi). �

3.4.1. One person decision problems. In the one player case, a (canonical) informa-
tion scheme I is called a (canonical) statistical experiment,and a game d, decision
problem—with value val(I, d). An experiment I1 is said less informative than an-
other I2, denoted I1 ≤ I2, if for any decision problem d with finite action set D and
continuous pay-off function on K ×D, val(I1, d) ≤ val(I2, d).

Lemma 30. If K is compact metric and I1 ≤ I2, then for every decision problem
d on K with a Blackwell space of actions D and borel nonnegative pay-off function
on K ×D, val(I1, d) ≤ val(I2, d).

Proof. First we assume D compact metric, and show that val(I1, d) ≤ val(I2, d) for
a decision problem d with a continuous pay-off function g on K ×D. The map f
that associates to any belief x ∈ ∆(K) the maximum expected pay-off under x,

f(x) = sup
a∈D

Exg(k, a)

is continuous and convex on ∆(K). Thus there exists a sequence an ∈ D s.t.
fn(x) = supi≤nExg(k, ai) converges uniformly to f . The restriction dn of d to
{a1 . . . an} is a decision problem with finite decision set and continuous pay-off, so

2For instance, consider a dense sequence (φn)n of continuous linear functionals on ∆(Ai) (which
is compact metric), and let fi(x) =

∑
n 2−n‖φn‖−2(φn(x))2.
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val(I1, dn) ≤ val(I2, dn). Moreover, if µj (j ∈ {1, 2}) is the marginal on Θ (the set
of types of the player) of the canonical statistical experiment associated to Ij, one
has

val(Ij, d) =

∫

∆(K)

fdµj

and similarly for dn. Hence in the limit val(I1, d) ≤ val(I2, d).
Now, by a theorem of Blackwell, Cartier, Fell and Meyer, [e.g., ? , remark 1.34

p. 78] there exists a family (Tx)x∈∆(K) of probability measures on ∆(K) such that
each Tx has barycentre x, for every borel set B of ∆(K) the map x → Tx(B) is
borel, and µ2(B) =

∫
x∈∆(K)

Tx(B)dµ1. Let d be a decision problem on K with

Blackwell space of actions D and borel nonnegative pay-off function on K×D, and
let f be the convex universally measurable function defined as before on ∆(K):
then val(Ij, d) =

∫
∆(K) fdµj, because there exist universally measurable strategies

which are uniformly ε-optimal, D being Blackwell. Thus
∫
∆(K) fdµ1 ≤

∫
∆(K) fdµ2

by Jensen’s inequality. Hence the result. �

Lemma 31. Given K compact metric, there exists a decision problem d with com-
pact metric action space and continuous pay-off function such that for every canon-
ical experiment I, the borel σ-field on ∆(X) is required in d extended by I. More
precisely, there exists a continuous function F from A to ∆(K) s.t. for any canonical
experiment I, and any optimal decision function σ in d extended by I, F (σ(x)) = x
a.s.

Proof. Fix two arbitrary decisions a′ and a′′. Let D be the set of continuous
functions from K × {a′, a′′} to [0, 1], and D′ a countable dense subset of D,
for the uniform topology. For any pair of beliefs x1, x2 on K, there exists two
continuous functions g(a′, .) and g(a′′, .) on K s.t. Ex1

g(a′, .) > Ex1
g(a′′, .) and

Ex2
g(a′′, .) > Ex2

g(a′, .), hence there exist d ∈ D′ s.t. the optimal actions in d given
x1 and x2 differ. Let (dl)l∈N∗ be an enumeration of D′, and d the decision problem
with action set A = {a′, a′′}N and pay-off function d0((al)l>0, k) =

∑
l>0 2

−ldl(al, k).
d0 is jointly continuous, so the expected pay-off is jointly continuous on A×∆(K).
Thus, with R(x) be the set of best responses to x ∈ ∆(K), x 7→ R(x) is u.s.c.
on ∆(K); in particular, R(∆(K)) is compact. Notice that R(x1) ∩ R(x2) = ∅ for
x1 6= x2. Define F : R(∆(K)) → ∆(K) as F (a) = x whenever a ∈ R(x). Then F is
a map with closed graph (R u.s.c.) between compact spaces, hence continuous on
its domain R(∆(K)). So the “more precisely” clause is established, and hence the
borel σ-field on ∆(K) is required in Γ(I, d). �

Proposition 32. Given a compact metric K, there exists a decision problem d0
with action space ∆(K) such that for any belief x on K, the only optimal action in
d0 is x.

Proof. Take the decision problem d of lemma 31, and apply lemma 29 to it: in the
new decision problem d0, with action set A′, there is a unique optimal action for
each belief on K, so this is a continuous function f : ∆(K) → A′. f is one to one be-
cause the borel σ-field on ∆(K) is required in d0 for any canonical experiment. We
have thus still all those properties when reducing the action set to A′′ = f(∆(K)).
But now f is a homeomorphism between A′′ and ∆(K). �

Lemma 33. For a decision problem d0 as in prop. 32, for any pair I1, I2 of sta-
tistical experiments on K with I1 ≤ I2, either I1 and I2 are associated to the same
canonical experiment, or val(I1, d0) < val(I2, d0).
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Proof. By lemma 30, val(I1, d0) ≤ val(I2, d0), with equality when I1 and I2 have
the same canonical experiment. Let I1 ≤ I2 be canonical, i.e. Ii is represented by
a probability µi over Xi = ∆(K). Ii also defines a probability measure Pi over
Xi ×K. Since I1 ≤ I2, there exists a transition probability Q from X2 to X1 s.t.
P1 is the marginal on X1×K of the law induced by P2 and Q on X1×X2×K. If
val(I1, d0) = val(I2, d0), following Q and playing optimally given x1 is an optimal
strategy in d0 extended by I2. By uniqueness of the optimal action in d0, it follows
that Q(x2, .) is the Dirac mass at x2, µ2 a.s. Hence µ1 = µ2. �

3.4.2. Main lemma of this part.

Lemma 34. Assume K is compact metric. For any game γ with compact metric
action spaces and continuous pay-off there exists a game γ′ with compact met-
ric action spaces and continuous pay-off such that, for any information scheme
E = (E, E , (Ei)i∈I, P, κE), if Fi ⊆ Ei is required for some player i in γ, then the sub-
σ-field F3−i of E3−i generated by his opponent’s beliefs on K × (E,Fi) is required
for this opponent in γ′.

Proof. Let γ = (A,B, g). We shall fix i = 2 throughout the proof, constructing
thus in fact a game γ′2; γ

′ will be the game γ′1×γ
′
2 where both are played in parallel.

Using lemma 29, we can assume that in γ, player 2 has a unique best response for
each belief on K ×A. Hence player 2’s optimal strategy is unique, and pure, thus
the unit mass at some point b(e), where b : E → B is E2-measurable. For the space
of states of nature K × B, let d be a “separating” decision problem for player one
(in the sense of prop. 32) with action space X = ∆(K ×B).

Given n > 0, let γ′n be the game with action spaces A×X and B, and with pay-off
g′n(a, x, b, k) = g(a, b, k)+ 1

nd(k, b, x). Finally, γ
′ is the game with action spaces A′ =

(A×X)N and B′ = BN and pay-off g′((an, xn), (bn), k) =
∑

n 2
−n.g′n(an, xn, bn, k).

Claim 35. Let τ be any optimal strategy of 2 in γ′. Then bn converges in P × τ -
probability to b(e).

Proof. By the uniqueness of 2’s optimal strategy in γ, prop. 22 and 23 imply the
convergence of τn to δb(.) in the sense that, for any continuous function f on B,
τn(f) converges σ(L∞, L1) to f(b(e)).

Let then B1 and B2 be 2 disjoint closed sets in B. There is a continuous function
f from B to [0, 1] which equals 1 on B1 and 0 on B2. Let Y = b−1(B2): the weak
convergence implies that the integral on Y of τn(f)− f(b(e)) tends to 0. But since
f(b(e)) = 0 and τn(f) ≥ τn(B1), this implies that µn(B1 × B2) tends to zero, with
µn the probability on B×B induced by (τn, τ0). By compactness of B, there exists
for every neighborhood U of the diagonal in B2 a finite number of pairs of disjoint
closed sets B1 et B2 s.t. the products B1×B2 cover ∁U : µn(U) tends to 1, for every
such neighborhood, i.e., d(x, y) tends in probability to 0 under µn, and hence, being
bounded, its integral tends to zero: E

∫
B d(b(e), y)τn(dy|e) → 0. �

Claim 36. Let τ be optimal for 2 in γ′. Then (P × τ)(k, bn|E1) converges weakly to
(P × τ)(k, b(e)|E1) in P -probability.

Proof. Since K ×B is compact metric, the conditional probabilities exist. Suffices
to prove that from any subsequence we can extract a further subsequence along
which the conclusion holds. Since bn → b(e) in probability (claim 35), extract an
a.s. convergent subsequence (Egorov). Now for any continuous function f onK×B,
E
(
f(k, bn)

∣∣E1
)
→ E

(
f(k, b(e))

∣∣E1
)
a.s. (dominated convergence). �

Claim 37. Given a pair of optimal strategies (σ, τ), there exists G : A′ → ∆(K×B)
such that G(an, xn) = Q(k, b(e)|E1) a.s.
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Proof. Use xn
a.s.
= Q(k, bn|E1) (prop. 32), claim 36, Egorov, and prop. 26. �

3.5. PE depends only on the 4 indifference class of E.

Proposition 38. Assume K is a separable metric space. There exists a game γ
with compact metric action spaces and continuous pay-offs s.t. each player has a
unique best reply for any prior on K and his opponent’s action, and s.t., for any
consistent prior P , there are pure optimal strategies which are borel isomorphisms
from Θi to its image.

Proof. The separable metric spaces are the subspaces of compact metric spaces;
by [? , theorem 1.2.3a p. 111] and prop. 17.4, topological inclusion is preserved
when going to the universal beliefs spaces, so we can assume K compact metric,
the borel isomorphism property being preserved by restriction to a subspace. Use
then lemma 34 inductively, starting with Fi = {∅,Ω} and γ0 a game with singleton
action sets. Let γn be the game obtained at the nth stage of the induction. If T n

i

denotes the sub-σ-field of Ti spanned by the first n levels of the hierarchy of types,
then T n

i is by construction required for i in γn, for any consistent prior P .
Let γ∞ =

∏
nγn be the game where all γn are played in parallel (and pay-offs

summed after multiplication by suitable weights): Ti is required in γ∞ for each i and
any consistent prior P . Using lemma 29 yields now further the uniqueness of best
replies, and so the existence of pure, borel optimal strategies (i using at each θi the
unique best reply against some fixed borel optimal strategy of j). With M the sup

norm of the game, replace then Ai by its disjoint union with a copy Θ′
i of Θi, defin-

ing i’s pay-off as −M − 1 when he plays in Θ′
i and his opponent not, and as 0 when

both do: our previous conclusions are unaffected. Given a pure borel optimal strat-
egy ai(θi), there is, Ti being required, a borel map fi : Ai → Θi s.t. fi ◦ ai is a.e. the
identity (separability of σ-fields): N = { θi | (fi◦ai)(θi) 6= θi or ai(θi) ∈ Θ′

i } is a neg-
ligible borel set, and ai injective outside. Redefine then ai on N by ai(θi) = θi ∈ Θ′

i:
it is still a borel pure optimal strategy, and is one to one, hence [? , 5.e p. 425] a
borel isomorphism with its image, Ai and Θi being compact metric. �

Remark 39. 1) Uniqueness of the best reply implies its continuity on ∆(K ×A−i),
and the a.s. uniqueness of optimal strategies.
2) So, for any consistent P , the distribution P̄ (with marginal P̄i on Ai) on
Ω×A1 ×A2 induced by P and optimal strategies depends only on P .
3) P 7→ P̄i is injective: for P 6= P ′, their marginals on Θi also differ; a pure optimal
strategy in 1

2P + 1
2P

′ which is a borel isomorphism with its image is optimal in P
and P ′, so by the borel isomorphism, P̄i 6= P̄ ′

i .

Lemma 40. Assume K compact metric. For consistent priors P 6= P ′, vg(P ) 6=
vg(P

′) for some pay-off function with finite action spaces g.

Proof. Else vg(P ) = vg(P
′) for any pay-off function g: if e.g. vg(P ) > vg(P

′)
for some g, this relation is preserved when replacing the action spaces by a suf-
ficiently fine finite discretisation (use first [? , prop. 4.3 p. 133] for player II in
γ(P ′), next for player I in γ(P )). Let then G = ((Ai), g) be as in prop. 38; for
a continuous function h on A1 and ǫ > 0 let Gǫ be the game with action spaces
(Ai) and pay-off function gǫ(a1, a2, k) = g(a1, a2, k) + ǫh(a1). The Mills deriv-
ative limǫ→0(V (Gǫ, P ) − V (G,P ))/ǫ is then also equal at P and P ′, and [cf. ?

, I.1Ex.6 p. 11] equals
∫
hdP̄1 (rem. 2 above): ∀h,

∫
hdP̄1 =

∫
hdP̄ ′

1, contradicting
rem. 3 above. �

Proof of theorem 11. As in prop. 38, suffices to deal with the case of compact K,
since the completely regular spaces are the subspaces of compact spaces. And then
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the space of consistent priors is also compact [cf. ? , cor. 2.4 p. 120], so suffices to
show that the V (G,P ) separate points.
P1 6= P2 implies there is a continuous function on Ω whose integral differs under

P1 and P2. Hence by cor. 18.2, for some metrisable quotient K̄ of K, still P1 6= P2

for the induced priors (cf. prop. 17.3) on Ω(K̄). Apply now lemma 40: there is
a game G with finite action spaces and with pay-offs continuous on K̄, for which
Val(G,P1) 6= Val(G,P2). �

Proposition 41. PE depends only on the 4 indifference class of E.

Proof. Assume E 4 E′ 4 E, and PE 6= PE′. Fix (tightness) a sequence Ki of disjoint
compact subsets of K s.t., with K∞ =

⋃
iKi, PE(K∞) = PE′(K∞) = 1. By lemma

19, E and E′ can be viewed as schemes over K∞, and still E 4 E′ 4 E when viewed
as schemes over K∞, and PE 6= PE′ ∈ Π(K∞). Thus we can assume K =

⋃
iKi.

Let now L denote the space K, with each Ki as additional open subset: the map
f : L → K is bijective and continuous, and L is completely regular, being locally
compact, and K-analytic, being a Kσ. So by lemma 19, we still have E 4 E′ 4 E

when viewed as schemes over L, and PE 6= PE′, thus contradicting thm. 11 (by
thm. 7.6 and prop. 24). �

Proof of Theorem 8. Use prop. 41 and prop. 24. �

Remark 42. Cor. 9 and 10 follow now. Thm. 7.5 and 7.6 are also established: for
7.5, from prop. 41 and prop. 24, because ∼ ⊆ 4i ⊆ 4 (i = 1, 2); and 7.6 was done
after prop. 23. Thus remain to be proved before theorem 12 only points 2 to 4 of
thm. 7.

3.6. Comparison of canonical information structures.

Proof of Theorem 12. We first claim that there exists such R iff there exist E and
F with PE = P , PF = Q, and E D−1

1 D2 F (resp. E D−1
1 F, E D2 F). Assume such

R exists, and let Ẽ = { (ω, ω′) ∈ Ω × Ω′ | k = k′ } endowed with R, and let Ẽi =

BΘi ×BΘ′

i (i = 1, 2). E and F are the same except that E1 = BΘ1 and F2 = BΘ′

2. It
is then clear that E D−1

1 D2 F, and PE = P by 2 and PF = Q by 3. For 41, the argu-

ment is the same except that already P
Ẽ
= Q since Ẽ F Q by 3 and 4. Dually for 42.

Assume now such E, F, where w.l.o.g. the σ-fields contain all null sets. Thus,
F2 ⊆ E2 and E1 ⊆ F1 ⊆ E on (E, E , P ). Let φE and φF from (E, E , P ) to Ω and to Ω′

be the modified maps of lemma 20 corresponding to E and F. Let φ = (φE, φF) from

(E, E , P ) to Ω× Ω′. Then, φ is by definition measurable to BK × BΘ1×Θ2 × BK′

×

BΘ′

1
×Θ′

2, hence induces a probability measureR on the product of those four σ-fields.
The marginals of R on Ω and on Ω′ are the restrictions to the corresponding σ-fields
of P and Q respectively, in particular tight, hence R has a unique tight extension to
BΩ×Ω′

, and this has P and Q as marginals on Ω and Ω′. Every product of disjoint
open sets in K and K ′ (times Θ1 ×Θ2 ×Θ′

1 ×Θ′
2) is R-negligible. Hence point 1.

θ′2 = θ′2(φF(e)) is (lemma 20) F2-, hence E2-measurable, thus E2’s independence
of Ω given Θ2 implies 2. Point 3 is dual.

Similarly for point 4. Hence our first claim.
We have thus proved the existence of such R when E D−1

1 F or E D2 F . Recall
that PE = PF whenever E and F are related by I, D, or F. Hence the existence of
a composition of such R when P 4 Q, P 41 Q, or P 42 Q. Remains thus only to
show that the relation of P and Q to be related by such an R is transitive (in each
of the three cases).

Assume P , P ′ on Ω and Ω′ are related by R and P ′, P ′′ on Ω′ and Ω′′ by R′. Let
ρ(dω|ω′) and ρ′(dω′′|ω′) be the conditionals defined by R and R′ [? , II.1Ex.16c
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p. 75], and define a tight distribution R̃ on Ω×Ω′×Ω′′ by its marginal P ′ on Ω′ and

by having the product ρ⊗ ρ′ as conditional on BΩ×BΩ′′

given Ω′. R̃ has R and R′

as marginals on Ω×Ω′ and on Ω′ × Ω′′ resp., hence its support is contained in the
diagonal of K ×K ′ × K ′′, and Ω × Ω′ and Ω′ × Ω′′ are conditionally independent
under R̃ given Ω′.

For X ∈ BΘ′′

2, by the conditional independence of Ω× Ω′ and Ω′ × Ω′′ given Ω′,
R̃(X |Ω× Ω′) = R̃(X |Ω′), which equals R̃(X |Θ′

2) by point 2 for the marginal R′ of

R̃. Taking now conditional expectations given Ω yields: R̃(X |Ω) = E(R̃(X |Θ′
2)|Ω),

= E(R̃(X |Θ′
2)|Θ2) by point 2 for the marginalR of R̃, hence = E(R̃(X |Ω×Ω′)|Θ2) =

R̃(X |Θ2). Hence point 2 for (the marginal on Ω×Ω′′ of) R̃, and point 3 is dual. Re-
mains to deal with point 4, e.g. for 42: this is the same argument, with subscripts
1 instead of 2, replacing just (twice) the use of (2) by that of (4). �

End of proof of thm. 7. If P and Q are related by R as in prop. 12, we proved above
that then P ∼ E D−1

1 D2 F ∼ Q, hence point 4, and clearly D−1
1 D2=D2D

−1
1 , hence

point 3.
By remark 42, remains thus only to deal with point 2. We start with a lemma:

Lemma 43. Let E ∼ F, be such that E ∩ F = ∅ and all σ-algebras E, F , E i, F i

are complete (i = 1, 2). Then E IFDD−1F−1I−1 F.

Proof of lemma 43. The inclusions embed E and F into G, the union E ∪ F, en-
dowed resp. with PE and PF . (The σ-fields and the map κ on G are the obvious
ones.) Let φmE and φmF denote the maps from lemma 20 for E and F resp., and
use them to define φ on G. Define then G′ and G′

i (i = 1, 2) as the inverse images
by φ of P and of BΘi resp. It follows from lemma 20 that G′ ⊆ G and G′

i ⊆ Gi,
that κ is G′-measurable, and that decreasing both Gi on G (with PE or PF) to G′

i

is F. Decreasing then also G to G′ is D. And on G′, PE and PF coincide, because
it is the probability distribution induced by the common canonical prior PE = PF

(thm. 8). �

Proof of thm. 7 2d. Let E ∼ F. Take a copy E′ of E s.t. E′ is disjoint from both
E and F , and add all null sets to E ′ and to E ′

i (i = 1, 2). Let also F′ denote F

where all null sets have been added to F ′ and to F ′
i (i = 1, 2). Clearly F′ FD F,

and E′ IFDD−1F−1I−1 F′ by lemma 43. To prove E IFDD−1F−1I−1 E′, argue
as in the proof of lemma 43, except that now G′ and G′

i (i = 1, 2) are the σ-fields
{B ∪B′ | B ∈ E (resp. Ei) }, where B′ is the copy of B in E′. �

Proof of thm. 7 2a, 2b and 2c. Let E 41 F (or E 41 F, or E 41 F), and R ∈
∆(Ω × Ω′) as in prop. 12. The set G̃ = { (ω, ω′) ∈ Ω × Ω′ | k = k′ } has R-outer

measure 1, since any set in BΩ×Ω′

disjoint from G has R-measure 0. Let G be the
trace of BΩ×Ω′

on G, and R the induced probability measure on it. Endow G with κ
to K defined the obvious way, and with the trace σ-algebras Gi

E and Gi
F of BΘi and

BΘ′

i (i = 1, 2). Complete G, Gi
E and Gi

F (i = 1, 2) on G by all R-null sets, and still
denote them the same way. Assume G ∩ E = G ∩ F = ∅, or take a copy of G with
this property. This defines two information structures GE = (G,G, (Gi

E)i=1,2, R, κ)
and GF = (G,G, (Gi

F )i=1,2, R, κ) such that E ∼ GE and GF ∼ F.
Hence from lemma. 43 E D−1F−1IFDD−1F−1I−1 GE and GF IFDD−1F−1I−1

F D F .
If E 41 F, point 2 of prop. 12 implies that adding G2

F to G2
E in GE is S−1

2 . Adding

then G1
F is D−1

1 , and by points 3 and 4, going from ((G1
E ∨ G1

F), (G
2
E ∨ G2

F )) to

(G1
F ,G

2
F) is F: GE S−1

2 D−1
1 F GF . And similarly, GE F−1D2S1 GF if E 42 F, and

GE S−1
2 D2D

−1
1 S1 GF if E 4 F.
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To complete the proof, notice that FIF = IF, and in particular SiIF = IF

(i = 1, 2). �

This ends the proof of thm. 7 — and of everything up to theorem 12 included. �

3.7. Vector orderings.

Lemma 44. Given an inclusion K1 ⊆ K2, the inclusion Π(K1) ⊆ Π(K2)
(prop. 17.4) is order-preserving for any of the orders 4,41 and 42.

Proof. Obvious (cf. also lemma 19). �

Corollary 45. Assume K completely regular (this is not needed for the convexity
part of the conclusions).

(1) The subset of R′s (with arbitrary marginals) in ∆(Ω×Ω′) satisfying theorem
12 is closed and convex.

(2) The graphs of 4, 41 and 42 in ∆(Ω) ×∆(Ω) are closed and convex.

Remark 46. Point 2 proves cor. 13.

Proof. 1. Our set equals {R ∈ ∆(Ω × Ω1) | marginals belong to Π, (1), (2), (3),
(4)}. Now condition (1) is equivalent to R(O×O′) = 0 for any pair of disjoint open
sets O and O′ in K, so determines a closed convex subset. Also Π is closed and
convex in ∆(Ω), as mentioned before, so since the map from ∆(Ω × Ω′) to ∆(Ω)
is affine and continuous, the condition that the marginals belong to Π determines
also a closed, convex subset.

Finally, the conditional independence conditions can be rewritten as

E[ϕ(ω)ψ(θ2, θ
′
2)] = E[θ2(ϕ)ψ(θ2, θ

′
2)](2)

E[ϕ(ω′)ψ(θ1, θ
′
1)] = E[(θ′1(ϕ)ψ(θ1, θ

′
1)](3)

(41) : E[ϕ(ω′)ψ(θ2, θ
′
2)] = E[θ′2(ϕ)ψ(θ2, θ

′
2)](4)

for bounded borel functions ϕ and ψ (bounded continuous functions in the com-
pletely regular case). Since for ϕ bounded (resp., continuous), θi(ϕ) is so too, it
follows that conditions (2), (3) and (4) are of the form that a family of bounded
borel (resp., continuous) affine functions of R vanishes — so, the set of solutions is
convex (and closed).

2. The convexity part follows immediately from 1. The closedness also does —
first in the compact case, since a continuous image of a compact set is compact,
next in the completely regular case, by lemma 44. �

Lemma 47. Π is a simplex, i.e., the linear subspace it spans of the space of signed
measures on Ω is a (complete) sublattice.

Proof. Taking marginals on Θi commutes with the lattice operations, since all mea-
sures have the same conditionals on K ×

∏
j 6=iΘj. �

Corollary 48. (1) The sets C = {λ(P −Q) | P < Q, λ ≥ 1}, and Ci similarly
defined with <i, are pointed convex cones.

(2) P < Q⇔ P −Q ∈ C, ∀P,Q ∈ Π (i.e., < is a “vector ordering”) iff

αP + (1− α)R < αQ + (1− α)R ⇒ P < Q, ∀P,Q,R ∈ Π, ∀α ∈]0, 1[

and similarly for <i and Ci.
(3) For K completely regular, the cone C or Ci is closed if the corresponding

order satisfies the conditions sub 2.



THE VALUE OF INFORMATION IN ZERO-SUM GAMES 17

Proof. 1. C is a cone, since for 0 ≤ λ < 1 and P < Q, λ(P − Q) =
(λP + (1− λ)R)− (λQ+ (1− λ)R) (R ∈ Π arbitrary), which belongs to C by con-
vexity of the graph of 4 (cor. 45). C is a convex cone since λ(P −Q)+λ′(P ′−Q′) =

(λ + λ′)
[(

λ
λ+λ′

P + λ′

λ+λ′
P ′

)
−
(

λ
λ+λ′

Q+ λ′

λ+λ′
Q′

)]
, which again belongs to C by

convexity of the graph. And C is pointed because 4 is an order (anti-symmetric).
2. The condition is clearly necessary. So assume it holds, and consider P ′, Q′ ∈ Π

with P ′−Q′ = λ(P−Q) and P < Q: we have to show that P ′ < Q′. Let R′ = P ′∧Q′,
r = ‖R′‖, R′′ = 1

rR
′, P ′′ = 1

1−r (P
′ − R′), Q′′ = 1

1−r (Q
′ − R′) (and say R′′ ∈ Π

arbitrary if r = 0, and assume w.l.o.g. that r < 1). Then P ′′, Q′′ and R′′ belong to
Π by lemma 47, and P ′ = (1− r)P ′′+ rR′′, Q′ = (1− r)Q′′+ rR′′ — so, by convex-
ity of the graph, it suffices to prove that P ′′ < Q′′. Since P ′′ −Q′′ = λ

1−r (P −Q),

we are reduced to the initial problem, but where P ′ and Q′ are in addition mutu-
ally singular. Then λP ≥ P ′ − Q′ and λP ≥ 0 imply, by the mutual singularity,
that λP ≥ P ′, so λ ≥ 1 and λP − P ′ = λQ − Q′ = (λ − 1)R with R ∈ Π. I.e.,
P = 1

λP
′ + λ−1

λ R, and Q = 1
λQ

′ + λ−1
λ R, hence by one condition, P < Q does

indeed imply P ′ < Q′.
3. Consider first the case where K is compact. C being convex, to prove that it

is weak-closed it suffices to show that its intersection with every closed ball is so,
using e.g. cor. 22.7 in [? ]. Let thus Rα = λα(Pα − Qα) be a bounded net in C,
converging say to R (in the space of signed measures on Ω). By our condition sub
2 and lemma 47, we can remove the common part of Pα and Qα, and still preserve
their order (after renormalizing): i.e., we can assume that Pα and Qα are mutually
singular. Since ‖Pα −Qα‖ = 2, it follows that λα is bounded. Fix an ultrafilter on
α, and let Pα → P , Qα → Q, λα → λ according to this ultrafilter (compactness,
...). Then, by closedness of the graph, P < Q, hence indeed R = λ(P − Q) ∈ C.

Consider finally the completely regular case: embedding K into its Stone-Ĉech

compactification K̃, the result follows by lemma 44 from the previous case. �

Remark 49. Points 2 and 3 of the corollary imply, by the separation theorem, that
4 (or 4i) is a vector ordering iff it is generated by the monotone continuous affine
functionals (i.e., P < Q iff ϕ(P ) ≥ ϕ(Q) for every 4-monotone continuous affine
functional ϕ on Π).

Lemma 50. A subset of Π is tight iff the set of its marginals on K is so.

Proof. We prove the lemma even in the I-person case. The set of marginals of
a tight set is obviously always tight. For the converse, the set of marginals be-
ing tight means there exists a l.s.c. function ϕ0 : K → R+ such that ϕ0 ≥ 1,
{x ∈ K | ϕ0(x) ≤ L} is compact ∀L ∈ R, and ∃M ∈ R :

∫
ϕ0dP ≤ M, ∀P in our

subset S. h Let then inductively ψi
n = θi(ϕn)∀i ∈ I, ϕn+1 = ϕn + 1

2n
1
#I

∑
i∈I ψ

i
n:

S ⊆ Π implies
∫
ψi
ndP =

∫
ϕndP ∀P ∈ S, hence

∫
ϕn+1dP = (1 + 1

2n )
∫
ϕndP ,

so
∫
ϕndP ≤ MΠn

k=1(1 + 1
2k ) ≤ eM . Also inductively, each ψi

n and hence each
ϕn is l.s.c., so, with ϕ = limnϕn, we get that ϕ : Ω → R is l.s.c., ≥ 1, satisfies
(monotone convergence)

∫
ϕdP ≤ e.M ∀P ∈ S, and finally, ∀L, {ω | ϕ(ω) ≤ L}

is compact: using [? , thm. 1.1.3 p. 108]), and observing that, by induction,
ϕn+1 depends only on ωn = ((θi,n)i∈I, k), one gets inductively over n, first that
K0

n,L = {ωn−1 = ((θi,n−1)i∈I, k) | ϕn(ωn−1) ≤ L} is compact ∀L, hence that

Ki,n,L = {θ ∈ Θi,n | θ(ϕn) ≤ L} is compact ∀(i, L) by Prohorov’s criterion, and
thus K0

n+1,L is compact, being a closed subset (l.s.c. of ϕn+1) of the product of

compact sets K0
n,L × Πi∈IKi,n,2n(#I)L. Therefore {ω | ϕ(ω) ≤ L}, being a closed

subset (projective limit, and lower-semi-continuity of ϕ) of the product of compact
sets K0

0,L ×Π∞
n=0Πi∈IKi,n,2n(#I)L, is also compact. Thus S is tight. �
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Proof of corollary 2.1. Since P 4 Q implies that P and Q have the same marginal
on K (e.g. by thm. 12.1), all Pα, in the monotone net have the same marginal on
K. Hence, by the above lemma, the Pα are tight — thus, by Prohorov, relatively
compact in ∆(Ω). So the net has limit points. Let P be any such limit points:
by closedness of the graph, ∀α0, ∀α ≥ α0, Pα ≥ Pα0

goes to the limit and implies
P ∈ limPα ≥ Pα0

(implying P ∈ Π): so P ≥ Pα ∀α. Then if P ′ is another limit
point, we also have P ′ ≥ Pα, ∀α — hence, going to the limit over α (closedness of
the graph again), P ′ ≥ P . Thus dually P ≥ P ′ also, and hence (anti-symmetry)
P = P ′: the limit point is unique. Together with relative compactness of the net,
this implies that the net converges. �

3.8. Barycentres.

Lemma 51. Let X = ∆(Y ) with Y Hausdorff, and µ ∈ ∆(X). The σ-additive
measure µ̄ defined by µ̄(B) =

∫
x(B)µ(dx) for B ∈ BY is τ-smooth.

Proof. If 0 ≤ fα → f is an increasing net of l.s.c. functions on Y , µ̄(fα) ր µ̄(f). �

Definition 52. - is the partial order on ∆(X) defined by µ - ν iff µ(f) ≤ ν(f)
for all f convex l.s.c. bounded from below.

Lemma 53. Let X = ∆(Y ) with Y Hausdorff. The following definitions of the
barycentre µ̄ of µ ∈ ∆(X) are equivalent:

(1) µ̄ ∈ X is such that δµ̄ - µ.
(2) µ̄ defined as a σ-additive measure by µ̄(B) =

∫
x(B)µ(dx) for B ∈ BY

belongs to ∆(Y ).

Proof. (2) ⇒ (1) (“Jensen’s lemma”). When µ has a compact support on which
the restriction of φ is continuous, approximating it by probability measures with
finite support yields the result. (Recall that the topology on X is defined as the
weakest topology for which the measures of open sets are l.s.c. functions and that
X is a Hausdorff space itself under this topology. This implies indeed that if the
µα converge to µ, then their barycentres converge to the barycentre of µ. Since φ
is continuous on the support of µ,

∫
φdµα →

∫
φdµ. On the other hand φ l.s.c.

implies lim inf φ(µ̄α) ≥ φ(µ̄).)
In general, let Kn be a sequence of disjoint compact sets that exhaust µ and such

that the restriction of φ to each Kn is continuous (use Lusin’s theorem). Let µn be
the normalized restriction of µ to Kn, and αn = µ(Kn). Note that µ̄n is in X be-
cause µ̄ =

∑
αnµ̄n as σ-additive barycentres, hence the sum being tight, each of the

summands is also tight. For each n,
∫
φdµn ≥ φ(µ̄n), and since each of the mem-

bers is bounded below, this inequality extends to the sum:
∫
φdµ ≥

∑
αnφ(µ̄n).

To prove that
∑
αnφ(µ̄n) ≥ φ(µ̄), remains thus only to prove the result for the case

of a measure µ with countable support.
We now view α as a measure with countable support on X . The measures

βn = 1∑
n
1
αi

∑n
1 αiδxi

converge in norm to α, therefore the barycentres β̄n of βn

converge to the barycentre ᾱ of α. To see that
∑

nαnφ(xn) ≥ φ(ᾱ), remark that
for each m,

∑m
1 αnφ(xn) ≥ (

∑m
1 αn)φ(β̄m), that

∑m
1 αnφ(xn) →

∑
nαnφ(xn) by

boundedness below of φ, and lim inf(
∑m

1 αn)φ(β̄m) ≥ φ(ᾱ) since φ is l.s.c.
(1) ⇒ (2). Let µ̄ be as in (1), and µ̃ be defined by µ̃(B) =

∫
x(B)µ(dx) for

B ∈ BY . Then, for h l.s.c. and bounded from below on Y , f given by f(x) = x(h)
is convex l.s.c. and bounded from below, so µ̄(h) = f(µ̄) ≤

∫
f(x)µ(dx) =∫

x(h)µ(dx) = µ̃(h). Hence µ̄(O) ≤ µ̃(O) for every open set O, so µ̄(B) ≤ µ̃(B) for
all B ∈ BY since µ̃ is τ -smooth. Hence µ̃ = µ̄. �

Lemma 54. µ ∈ ∆(X) has a barycentre if and only if µ̄ is carried by a Kσ.
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Proof. Immediate since any τ -smooth measure on a Kσ is tight. �

Lemma 55. Assume µ - ν. Then µ has a barycentre if and only if ν has one, and
both coincide.

Proof. If µ has barycentre µ̄, then δµ̄ - µ - ν so that ν has barycentre µ̄. Assume
ν has a barycentre ν̄ and let µ̄(B) =

∫
x(B)µ(dx). For h bounded l.s.c. on Y , define

f convex, bounded l.s.c. on X by f(x) = x(h). Then µ̄(h) = µ(f) ≤ ν(f) = ν̄(h).
For h bounded borel, let (hn) be a decreasing sequence of l.s.c. functions ≥ h s.t.
ν̄(hn) converges to ν̄(h): µ̄(h) ≤ µ̄(hn) ≤ ν̄(hn). Hence µ̄(h) ≤ ν̄(h) for all bounded
borel h, thus µ̄ = ν̄. So µ̄ ∈ ∆(Y ). �

3.9. Cartier’s Theorem.

Proposition 56. Assume either µ or ν have a barycentre. Then µ - ν if and only
if there exists P ∈ ∆(X×X) that has µ and ν as marginals and such that for every
bounded borel function h on Y , EP (x2(h)|x1) = x1(h) P1-a.s.

Proof. We first show that it suffices to prove the proposition assuming both µ and
ν have a barycentre. In the direction where P has to be constructed, use lemma
55. In the other direction, note that

∫
x1(B)µ(dx1) =

∫
EP(x2(B)|x1)µ(dx1) =

EPx2(B) =
∫
x2(B)ν(dx2), and apply lemma 53 (2) .

Assume first Y is compact. For the “if” part use Jensen’s theorem. For the
“only if” part, theorem 35 p. 288 of [? ] yields a measure θ on D0 with barycentre
µ, ν, where D0 is the set of pairs (δx, η) ∈ ∆(X)2 such that δx - η. Define now
P by

∫
h(x, y)dP =

∫
h(x, y)η(dy)θ(dx, dη). Obviously P has (µ, ν) as marginals.

For f affine and continuous, EP(f(y)|η, x) =
∫
f(y)η(dy) = f(x) P a.s. and thus

EP(f(y)|x) = f(x) P1 a.s. This holds when f(µ) = µ(h) for h continuous, and by
taking the limit for h Baire. This generalizes to h borel, since any such function is
the sum of a Baire function and one which is negligible for both µ and ν.

We extend the proposition from Y compact to locally compact. Let Y be locally
compact, and Y ′ its Alexandroff compactification, X ′ = ∆(Y ′). Since Y is borel
(open) in Y ′, X and ∆(X) are borel in X ′ and ∆(X ′). It suffices to show that
each l.s.c. convex bounded below f on X is the restriction of such a map on X ′;
this is because every convex l.s.c. function on X is a sup of integrals of bounded
continuous functions on Y that converge at infinity.

We extend the proposition from Y locally compact to countable disjoint unions
of compact sets. Let thus Y = ∪nKn, where (Kn) is a family of disjoint compact
sets, and let Y ′ be Y endowed with the topology with as open sets those whose
intersection with each Kn is open in Kn. Y

′ is locally compact. Since the topology
on Kn is unchanged, and since the Kn are borel both in Y and in Y ′, the borel
sets and the tight measures on Y and Y ′ are the same, i.e. X ′ is X endowed with
a stronger topology. As Y ′ is K-analytic so are X ′ and ∆(X ′), and the continuous
canonical injection from ∆(X ′) to ∆(X) is onto, cf. [? , 9.b.3 p. 428] and [? , 9.c
p. 429]: ∆(X ′) is a reinforced topology on ∆(X), and so is ∆(X ′×X ′) on ∆(X×X).

Remains thus only to show that the order on measures is unchanged, i.e., that
if µ(f) ≤ ν(f) for all convex l.s.c. f , bounded below on X , the same holds on
X ′. Since X ′ is completely regular (locally compact), such an f on X ′ is a sup of
integrals of bounded continuous functions. And since µ and ν are tight, integrals
go to the limit along increasing nets of l.s.c. functions. Suffices thus to consider
f(x) = maxi=1...nx(ϕi), where the ϕi are bounded continuous functions on Y ′.

Let now M = supi,yϕi(y), and ϕ
k
i = ϕi on Kl for l ≤ k, and = M for l > k and

let fk = maxi=1...nx(ϕ
k
i ). Each ϕk

i is l.s.c. on Y hence fk is convex l.s.c. bounded
below on X . Hence the inequality for the fk, so for f by monotone convergence.
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We now prove the general case. Let µ̄ and ν̄ be the barycentres of µ and ν, and
(Kn) be a sequence of disjoint compact sets in Y that exhaust µ̄+ν̄. Let Y ′ = ∪nKn

and X ′ = ∆(Y ′). Note that Y ′ is a borel subspace of Y hence X ′ is a borel subspace
of X and, by the same argument, ∆(X ′) is a borel subspace of ∆(X).

For one direction, assume P ∈ ∆(X ×X) having the stated properties and ob-
serve first since the marginals µ, ν of P belong to ∆(X ′), P ∈ ∆(X ′ × X ′), and
has the stated properties relative to X ′. Hence that remains to show that µ - ν
relative to X whenever the same holds relative to X ′. This is because restrictions
to X ′ of convex l.s.c. functions on X have the same properties on X ′.

In the other direction, given µ - ν on X , we first want to prove the same
relation holds on X ′. Since µ̄, ν̄ ∈ X ′ it follows that µ, ν ∈ ∆(X ′). To prove
that µ - ν on X ′ let ϕ be bounded from below l.s.c. convex on X ′, let ϕ̄ = ϕ
on X ′ and ϕ̄ = +∞ on X − X ′, let ϕ̂(x) = lim infy→x ϕ̄(y) on X . ϕ̂ is clearly
l.s.c. bounded below (X is Hausdorff), and ϕ̂|X′ = ϕ follows from ϕ l.s.c. on X ′.
Remains the convexity: obviously ϕ̄ is convex. Let x1, x2 ∈ X and 0 < β < 1,
x1,α → x1 and x2,α → x2 s.t. ϕ̄(xi,α) → ϕ̂(xi), and let z = βx1 + (1 − β)x2,
zα = βx1,α + (1 − β)x2,α. For U open in Y , lim inf zα ≥ z(U) follows from
lim inf xi,α ≥ xi(U), hence by definition of the weak topology zα → z. Since ϕ̂
is l.s.c. and convex, ϕ̂(z) ≤ lim inf ϕ̄(zα) ≤ βϕ̂(x1) + (1 − β)ϕ̂(x2). So, we proved
that every convex l.s.c. bounded from below map on X ′ is the restriction of a
such map on X , and the converse is straightforward. This shows µ - ν on X ′. The
proposition on X ′ yields P ∈ ∆(X ′×X ′) with the desired properties. Since X ′×X ′

is a subspace of X ×X , P has the desired properties in ∆(X ×X). �

3.10. Proof of theorem 15. Under (a), we have P 42 E, and since E ∼ PE = Q
we get indeed P 42 Q. Similarly (b) yields Q 41 P

′, hence the “if” part.
In the other direction, start from the distribution R in thm. 12 (with P ′ as Q).

Let E = (Ω× Ω′, R,Θ1,Θ
′
2) (with the borel sets, and the obvious map to K).

Let Q ∈ ∆(Ω′′) be the canonical information structure associated to (Θ1×Θ′
2×

K,R,Θ1,Θ
′
2), and φ the corresponding canonical map, φ is also canonical from E

to Q since the properties to be checked [? , thm. 2.5.1 p. 122] are the same. R
and φ induce a (tight) probability R′ on Ω× Ω′ × Ω′′ (carried by “the diagonal of
K ×K ×K”).

For B′′ ∈ BΘ′′

2 , φ−1(B′′) differs from some B′ ∈ BΘ′

2 by a null set [? , thm. 2.5.1
p. 122]. Since the conditional probability of B′ given Ω is Θ2-measurable by
thm. 12.2, the conditional probability of B′′ given Ω is so too: Θ′′

2 and Ω are condi-
tionally independent given Θ2. Hence, if ρ(·|·) is a regular conditional probability
on Θ′′

2 given Θ2 (tightness), then ρ is also a regular conditional probability on Θ′′
2

given Ω. In particular, P and ρ induce the correct probability on Ω × Θ′′
2. Hence

15 (a), and 15 (b) is dual.
Remains to show that 15 (a) is equivalent to 15 (a’) (and hence also 15 (b)

to 15 (b’)). Under 15 (a), let ν(θ′2)(dθ2) be a regular conditional probabil-
ity on Θ2 given θ′2 under P ⊗ ρ, in the sense of [? , II.1Ex.16c p. 75]. Let
π(θ′2)(dω) = θ2(dθ1, dk)ν(θ

′
2)(dθ2). Note that, by continuity of θ2, for any open

set O in Ω, θ2(O) is l.s.c. in θ2 (i.e., θ2 is also a continuous map to ∆(Ω)). There-
fore, for any borel set B in Ω, θ2(B) is borel measurable, and hence π(θ′2)(B) is
well defined, and borel measurable. It follows then immediately that π is a borel
transition probability from Θ′

2 to Ω. Further, consider now an increasing net Oα

of open sets in Ω, with union O. The θ2(Oα) form then, as argued above, an in-
creasing net of l.s.c. functions, and converge pointwise to θ2(O) by regularity of
θ2. So, by regularity of ν(θ′2), π(θ

′
2)(Oα) increases pointwise to π(θ′2)(O): each

π(θ′2) is “τ -smooth”, so to prove its tightness, remains only to show it is car-
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ried by a Kσ. Note that, under P ⊗ ρ, θ′2 and ω are independent given θ2, so
for B borel in Ω, Prob(B|θ2, θ′2) = P (B|θ2) = θ2(B) (consistency of P ). Thus
Prob(B|θ′2) =

∫
θ2(B)ν(θ′2)(dθ2) = π(θ′2)(B): π is the conditional probability on Ω

given θ′2 under P ⊗ ρ. Therefore, let B be a Kσ in Ω with P (B) = 1: one must
also have π(θ′2)(B) = 1 a.e., so, redefining ν(θ′2) on the exceptional set, we get now
that each π(θ′2) is tight. Let then ν̄(θ′2) denote the marginal of π(θ′2) on Θ1 ×K:
it is tight too, hence in Θ2 (by its homeomorphism with ∆(Θ1 × K)), and is the
barycentre of ν(θ′2). Thus each ν(θ

′
2) ∈ ∆(Θ2) indeed has a barycentre ν̄(θ′2) in Θ2.

We now show that the map ν̄ : Θ′
2 → Θ2 is, under P ⊗ ρ, borel-measurable, and

induces a tight distribution µ ∈ ∆(Θ2) on the borel sets of Θ2. Observe that the
map from ν(θ′2) ∈ ∆(Θ2) to π(θ

′
2) ∈ ∆(Ω) is continuous (this is just on the range of

ν, since elsewhere the values might not even belong to ∆(Ω)), by the continuity of θ2
(argument as above). And the map from π(θ′2) to its marginal ν̄(θ′2) is clearly con-
tinuous. So the borel measurability of ν to ∆(Θ2), and the tightness of the induced
distribution on B∆(Θ2), are preserved by composition with those continuous maps.

For φ on Θ2 convex l.s.c. and bounded below, we apply lemma 53.1, with Θ2

(= ∆(K × Θ1)) for X , and obtain
∫
φ(θ2)ν(θ

′
2)(dθ2) ≥ φ(ν̄(θ′2)). Both sides of the

inequality are borel-measurable w.r.t. θ′2, by our measurability properties for ν and
ν̄; since they are also bounded below, we can integrate the inequality w.r.t. θ′2. The
repeated integral in the left hand member becomes then just

∫
φ(θ2)P (dθ2), since

φ is P -integrable — and hence P ⊗ ρ-integrable with the same integral. And by
definition of µ, the right hand side becomes just

∫
φdµ: our inequality is established.

Remains thus only to prove that Pµ = Q. By definition, Pµ = PEµ
, where Eµ

equals Ω endowed with θ2(dθ1, dk)µ(dθ2). And Q = PE (where player 2 is informed
only of θ′2). Now in E, ν̄(θ′2), being the posterior of 2 on Θ1×K, is a sufficient statis-
tic for 2, so PE = PE′, where E′ equals E except that player 2 is only informed of
ν̄(θ′2). Now the joint distribution under E′ of (θ1, ν̄(θ

′
2), k) equals θ2(dθ1, dk)µ(dθ2),

thus µ ∈ ∆b(Θ1), Pµ is well defined, and PE′ = PEµ
, and hence our equality.

To prove that (a’) implies (a), observe that P2 has a barycentre: the marginal
of P on Θ1 × K. So, by lemma 55, µ also has a barycentre, and in particular
µ ∈ ∆b(Θ2): Pµ is well defined. And proposition 56 yields R ∈ ∆(Θ2 × Θ′

2), with
P2 and µ as respective marginals, such that E(θ2(h)|θ′2) = θ′2(h) µ a.e. for every h
borel bounded on Θ1 ×K. Let ρ be the conditional under R on Θ′

2 given Θ2. We
know that Pµ = Q and need to prove that PE = Q, where E is the information
scheme on (Ω × Θ′

2, P ⊗ ρ) where player 2 observes θ′2 only. Let now P̄ denote
R ⊗ θ2: since R ∈ ∆(Θ2 × Θ′

2) and θ2 is continuous from Θ2 to ∆(Θ1 × K), P̄

is τ -smooth on BΩ×Θ′

2, with
∫
h(ω, θ′2)dP̄ = ER

∫
h(ω, θ′2)θ2(dω) ∀h ≥ 0 borel on

Ω × Θ′
2 — in particular, BΩ and BΘ2×Θ′

2 are conditionally independent given Θ2

under P̄ . Observe finally that P̄ has P as marginal on Ω since the marginal of R on
Θ2 is P2, and hence P̄ ∈ ∆(Ω×Θ′

2), being τ -smooth and having tight marginals P
on Ω and R on Θ2×Θ′

2. By the conditional independence, ρ is also the conditional
probability on Θ′

2 given Ω under P̄ .

So P ⊗ ρ is well defined on BΩ⊗ BΘ′

2 and is the restriction of P̄ to that σ-field.
Thus E is equivalent (D−1) to the information scheme (Ω×Θ′

2, P̄ ) in which player

2 only observes θ′2. Let P̃ be the marginal of P̄ on Ω̃ = Θ1×Θ′
2×K. P̃ ∈ ∆(Ω̃) and

the marginal of P̃ on Θ̃2 is µ, the marginal of R on Θ′
2. Now E becomes equivalent

(D) to (Ω̃, P̃ ). Remains to show that (Ω̃, P̃ ) is also the information scheme Eµ

induced by µ.
I.e., that ∀B ∈ BΩ, P̃ (B) =

∫
θ2(B)µ(dθ2). Let P ′ denote the right-hand

member. Since µ ∈ ∆(Θ2) and since θ2 is continuous from Θ2 to ∆(Ω), P ′ is
τ -smooth on BΩ. For B = B1 × B2 with B1 ∈ BΘ1×K and B2 ∈ BΘ2 this means:
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EP̄ [IB1
|θ′2] = θ′2(B1). The left hand equals EP̄ [EP̄ [IB1

|θ2, θ′2]|θ
′
2]. Since by the

conditional independence above EP̄ [IB1
|θ2, θ′2] = P̄ (B1|θ2), = P (B1|θ2) P being the

marginal on Ω, = θ2(B1) since P ∈ Π, the left hand member equals ER[θ2(B1)|θ′2], R
being the marginal on Θ2×Θ′

2, = θ′2(B1) by the property of R. This proves the par-

ticular case. Thus P ′ is τ -smooth on BΩ, P̃ ∈ ∆(Ω), and P ′(B1×B2) = P̃ (B1×B2)
for all B = B1×B2 with B1 ∈ BΘ1×K and B2 ∈ BΘ2. This extends immediately to
finite unions of such sets, since every such finite union can be re-written as a disjoint
finite union. In particular, P ′(B) = P̃ (B) whenever B is a basic open set (i.e., a
finite union of products of an open set in Θ1 ×K and an open set in Θ2). Hence,
by τ -smoothness, this extends to every open B, and then to every B borel. �
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