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†CNRS – École Polytechnique and London School of Economics, London,
olivier.gossner@poly.polytechnique.edu

‡Department of Economics, University of Graz, christoph.kuzmics@uni-graz.at.

1We are very grateful to Mark Dean, Michael Greinecker, Ran Spiegler, Tymon Tatur,

Matthew White, conference participants at the conference on the Biological Basis of Eco-

nomic Behavior, Vancouver, and at the workshop on Strategic Information Acquisition and

Transmission, Munich, seminar participants at Northwestern University, London School

of Economics, University of Warwick, Paris Game Theory Seminar, Roy Seminar, Euro-

pean University Institute, Center for Rationality at Jerusalem, Tel-Aviv University, Johns

Hopkins University, and the University of British Columbia as well as Rakesh Vohra and

two anonymous referees for helpful comments and suggestions.

1



Keywords: consistency, rationality, weak axiom of revealed preferences, strict

preference

Journal of Economic Literature classification numbers: C73, D01, D11

1 Introduction

Consider the problem of an agent who has to choose between different al-

ternatives while being uncertain about their consequences. A cornerstone

approach is the expected payoff approach, which originates in the work of

Pascal (1670), and according to which the agent should rank alternatives

according to the expected payoff each of them generates. Albeit uncertain

about which alternatives fare better than others, the agent still forms a rank-

ing over them. In this case, preferences stem from beliefs; at the extreme,

an agent who is completely ignorant about payoffs is indifferent between all

alternatives.2 In this paper, we propose a setup in which optimal behavior

commands even a fully ignorant agent to act as if she had strict preferences

over alternatives. In our model, the ranking over alternatives is not driven

by beliefs, but by the principle of maximization of an option value.

To fix ideas consider the following scenario. Two friends decide to go on

a diet (with the purpose to lose weight, to feel better, to feel less tired, to

combat an illness, or for some such goal) which they commit to following

for a specified length of time. Each day both dieters are offered food from

2With “complete ignorance” we mean that the agent has a symmetric belief about

how good each alternative is for her: each alternative is just as likely to be good as any

other.
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different menus, but they are ignorant as to what choices are good to achieve

their objective. Independently of each other, they both choose a choice rule,

i.e., a rule that specifies what choice to make depending on each possible

menu. After a while they meet and exchange their experience. The least

successful dieter can then decide to adopt the more successful dieter’s choice

rule. How should each choose their diet to begin with?3

A model that is suitable to tackle this question must have the following

ingredients. First, we must have individuals making choices in a variety

of decision problems. Second, there must be some potentially attractive

alternatives that individuals are ex-ante uncertain about whether they are

“good” or “bad” choices. In fact we can ignore all clearly inferior choices

such as eating stones or drinking salt-water, and focus only on those choices

that are potentially “good”. Third, realistically individuals will not have to

stick to one rule of behavior throughout their whole life. They could learn

something about the likely success of certain rules of behavior as they go

along. However, and fourth, this learning is incomplete.

The model we propose can be sketched as follows. A decision maker

(DM) will be asked to make repeated choices from subsets of a grand set

of alternatives. The DM is asked to select a choice rule that specifies what

choice she would make for every possible subset of the set of all alternatives.

A choice rule can be strictly consistent, i.e., derived from a strict preference

ordering, it can also be non-consistent in the sense of exhibiting cycles or

other non-transitivities. We allow all choice rules. At the time of this choice,

3This example as well as others are developed in Section 1.1.
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the DM acts under a veil of ignorance and knows nothing about the value

of the various alternatives to her. Nature then randomly chooses a gain

function that attaches material gains to each alternative. After some time

the DM learns how well her choice rule is doing on average without learning

how each alternative contributes to the overall material gain, i.e., without

learning the gain function itself. The DM can then stick to her chosen rule

and obtain the resulting average material payoff or select an outside option,

the value of which is chosen randomly and is possibly correlated with the gain

function. The outside option captures any form of outside opportunity to the

DM. In particular, it encompasses a reduced form model of the possibility of

(incomplete) social learning.

We show that, in order to maximize expected gains, a choice rule must be

strictly consistent. Moreover we identify conditions under which all strictly

consistent rules, and only those rules, are equally optimal.

The argument for this claim is as follows. Under ignorance, it is easy to

show that in such an environment all choice rules produce the same expected

material gain. We show, and this is the crucial result, that strictly consistent

rules are in a sense the riskiest rules. To be more precise observe that any

choice rule induces a probability distribution over material gains. We prove

that for any non-strictly consistent choice rule there is a distribution over

strictly consistent choice rules that induces a distribution over material gains,

which for any realized gain function is a strict mean preserving spread over

the distribution of material gains induced by the given choice rule.

The DM will then strictly prefer this distribution over strictly consistent

rules over the given choice rule, because increasing risk increases the value
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of the outside option.4 Thus, for any non-strictly consistent choice rule, the

DM will find a strictly consistent choice rule that she prefers strictly over the

given choice rule.

The paper proceeds as follows. In Section 1.1 we discuss a series of ap-

plications of our model. In Section 2 we provide the model. In Section 3

we state the main theorem and sketch its proof, in the course of which we

establish two additional results that are of independent interest. Section 4

provides a discussion of the exact role the assumptions play for the various

results. In section 5 we use a simple example to help the reader and demon-

strate the boundaries of our results by highlighting what is not true in this

model. Section 6 concludes with possible extensions of the model.

1.1 Applications

Our model relies on several major assumptions. The first of them is the de-

cision maker’s ex-ante ignorance as to what payoffs are associated with a list

of potential items of choice. The second one is that the decision maker faces

a number of decisions problems. For convenience, this number is assumed

to be infinite in our main model, but it can be assumed finite or, if the DM

perfectly anticipates all decision problems, this number can even be relatively

small, see Section 6. As a third assumption, the decision maker doesn’t learn

the payoffs associated to the different items available as different choices are

made, or if she does learn, then she does not or cannot use this information

4This is the same logic as in finance, e.g., in Merton (1973) and Rasmusen (2007),

where increasing risk increases option value.
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immediately. This assumption is in fact realistic in set-ups where all payoff

realizations and information occur at a stage following decision making as

in two of the four applications below. It is also realistic in set-ups where

changing the choice rule is more costly than the value of information from

the feedback from a single decision problem as in the other two applications

below. And finally, the decision maker may have access to an outside option

which can, for instance, take the form of a switch of rule or some insurance

policy.

1.1.1 Dieting

According to the Boston Medical Group “[a]n estimated 45 million US Amer-

icans go on a diet each year”, mostly with the desire to look better, to lose

weight, or to be more healthy.

Although there is a growing consensus among nutritionists on the com-

bination of diet, exercise and lifestyle that is best for goals of losing weight

and being healthy, the number of diets people have tried and are still trying

is almost endless.5 Dieting is also very profitable for the dieting industry,

with estimated revenues of $ 64 billion in 2014.

How is the observed diversity of diets consistent with our model assump-

tions?

First, scientific evidence on what diets work best is sometimes inconclu-

sive, and poorly disseminated to the public. Hence the veil of ignorance.

Second, the number of food decisions faced by an individual is large, typi-

5see e.g., https://en.wikipedia.org/wiki/List_of_diets
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cally between 3 and 5 per day. Third, the variance in weight measurements

due, for instance, to different levels of hydration or medical conditions ren-

der the appreciation of a diet’s efficiency difficult to assess in the short-run,

and other diet-related medical conditions such as muscle loss may take a long

time to detect. Overall, the long-run effect of one’s diet on weight and health

is difficult to assess in the short-run. Finally, dieters have outside options. If

at the end of their diet they are not very successful they can adopt another

diet, the diet of a more successful friend, or their old diet.

Our results suggest that the diversity of diets, all of which recommend

consistent choices over foods, may actually be driven by these features. They

predict that chosen diets may well be imperfect or maybe even detrimental

for their goal. Thus, if we were to observe a dieters food choices and if we

were trying to infer her “preferences” from her food choices, we would not

recover her true preferences.

1.1.2 Farming

How does a farmer choose what seeds to plant and how to cultivate her

seeds? Farmers have a huge variety of seeds they could grow and each piece

of land may be suitable only for a subset of them. Before the beginning of

the year, many uncertainties are unresolved, in particular it is unknown what

yields each type of crop would generate as this depends on future climatic

conditions. Also the future price of each crop is still uncertain. Insurance,

when available, opens the possibility of an outside option to the farmer.

Absent such insurance, a risk averse farmer would prefer planting a variety

of seeds to minimize risk. However, when insurance is available, and even
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under uncertain future conditions, our results show that a not too risk averse

farmer should plant as if having a ranking over crops: She will choose the

“best” crop according to this ranking in all fields that allow it and choose the

“second best” crop in all fields that do not allow the “best” crop but allow

the “second best” and so on.

1.1.3 Education

What career should a young person pursue? How should this person best pre-

pare herself for the future job market she will be competing in? Many years

before this person will have a job and career, this person has to make a large

array of decisions about which (learning) activities to choose from a large

set of possible activities. Her goal is to maximize her eventual satisfaction

in life with an appropriate career path. But at the time of decision making

she is very uncertain about many aspects of this problem. She is uncertain

about her own skills. Perhaps she is an apparently talented musician, but

is it really her comparative advantage? Also future market conditions are

uncertain. She could specialize in internet technology, but perhaps when she

is finished with her education market conditions are such that this doesn’t

commands a particularly high salary. So her question is this. Should she

try to specialize as much as possible (that is, behave as if she had consistent

preferences over learning activities) or should she try to become a generalist?

Among the many decisions the agent has to make are which courses to

follow, where the payoff associated to these is realized only at a later stage,

sometime after the curriculum is completed. The outside option could be to

start a new course from scratch or to work in the parents’ business.

8



Our main result implies that, even if she does not know what career is

ultimately the most rewarding, she should consistently pursue one specific

career path (if her outside option is reasonable and she is not too risk averse)

and make consistent choices. Even if the realized outcomes may be bad in

some cases, on average, she will maximize expected payoffs this way.

1.1.4 Medical Treatment

There are many (smaller) ailments for which the medical profession has not

yet found the perfect cure. For instance, back problems can come in many

forms and for many possible reasons. Furthermore a wide variety of treatment

options is available and it is still unclear which treatment option is best in

which situation. Should it be surgery, osteopathic maneuvers, acupuncture,

physical exercise, or a combination of all of these? And suppose the answer

is that it should by physical exercise, what kind of physical exercise should

it be? Walking, running, swimming, yoga?

As we mentioned, knowledge of the best medical treatment for each con-

dition is not known. Furthermore, learning from the success or failure of

treatment from each single patient is surely severely limited, the strong vari-

ance on the effect of each treatment on each patient tends to render learning

difficult. Good feedback is sometimes also limited if the doctor does not see

every patient again after prescribing treatment. One outside option that a

doctor can adopt after following her choice rule of treatments for some time,

is to adopt another choice rule of treatments.

Our results suggest that it may be optimal for a doctor to behave as if

she has strict preferences over treatment options, even if her preferences are
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(or turn out to be) wrong. This could in this context also be interpreted as

the doctor having a firm belief, correct or not, over the efficacy of the various

treatments.

2 Model

2.1 Choice

Our set-up is based on the classical model of choice from choice sets. Let

K = {1, ..., |K|}, |K| > 1 be the set of all possible alternatives. Let

L = P(K)\∅ denote the set of all non-empty subsets of K. We call an

element in L a choice set. A decision maker is repeatedly asked to make a

choice from different choice sets.

Definition 1 A choice rule is a function R : L → L such that R(L) ⊆ L

for all L ∈ L. Let R denote the set of all such choice rules.

Following Uzawa (1956) and Arrow (1959), let � denote a binary (prefer-

ence) relation over elements in K with the interpretation that when i � j an

individual holding this preference relation weakly prefers i over j (see also

Chapter 1.B in Mas-Collel, Whinston, and Green (1995)). The relation �

is complete if for any two i, j ∈ K, i � j or j � i (or both), it is transi-

tive if i � j and j � k imply i � k. A complete and transitive relation

is called consistent (often called “rational”, see e.g., Definition 1.B.1 in

Mas-Collel, Whinston, and Green (1995)). In this paper a special case of

consistent preferences plays a prominent role, namely, strict preferences.
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A relation � is anti-symmetric if whenever i � j and j � i then i = j.

We call a preference relation strictly consistent if it satisfies completeness,

transitivity, and anti-symmetry.

These definitions extend from preference relations to the corresponding

individual’s behavior.

Definition 2 A choice rule R ∈ R is consistent if there exists a complete

and transitive preference relation � such that, for every L, R(L) is the set

of maximal elements in L for �. It is strictly consistent if it is consistent

and R(L) is a singleton for all L ∈ L. Let Rs denote the set of strictly

consistent rules.

It is easily verified that a strictly consistent rule is one based on a strictly

consistent preference relation.

2.2 The environment

An environment consists of two components. First, nature chooses a (mate-

rial) gain function that associates gain levels to possible choices. It is useful

to consider a fixed finite set of gain levels G ⊂ IR+. A gain function

g : K → G is then a function from the set of all possible choices to this set

of possible gain levels, with the interpretation that g(k) ∈ G is the gain an

individual receives when choosing k ∈ K.

We extend any gain function to the set L of choice sets by setting

g(L) =
1

|L|

∑

k∈L

g(k)
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for L ∈ L, with the natural interpretation that g(L) is the expected gain for

the decision maker when L is the set of accepted alternatives, assuming that

each element in L is chosen by the DM with equal probability.6

Second, a distribution over choice sets p ∈ ∆(L) describes the fre-

quency with which choice sets are presented to the decision maker. We

assume that enough choice sets are available with positive frequency, thus

making the assumption that p has full support over the non-singleton subsets

of L.

In some cases, it is useful to consider neutral distributions, for which all

alternatives play the same role.

Definition 3 A distribution p over choice sets is neutral if, for every per-

mutation π of K, and every choice set L ⊆ K, p(L) = p(π(L)).

Obviously, the uniform distribution is neutral. Other examples of neutral

distributions over choice sets are the uniform distributions over choice sets

of fixed size l, for 1 ≤ l ≤ |K|.

Given a gain function g and a distribution of choice sets p, the (average)

material gain of any rule R ∈ R is computed as:

gp(R) = IEpg(R(L)) =
∑

L∈L

p(L)g(R(L)).

Let G be a finite set of gain functions, and let q ∈ ∆(G) be a distribution

over gain functions. For a permutation π : K → K and a gain function

6This is an innocuous assumption, which, however, provides us with the property that

the set of all decision rules is finite. The key lemma below, Lemma 2, extends to all

stochastic choice models.
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g : K → G, we let gπ : K → G be the permutation of g defined by gπ(k) =

g(π(k)) for all k ∈ K.

Definition 4 A distribution over gain functions, q ∈ ∆(G), is symmetric

if gπ ∈ G and q(g) = q(gπ) for every gain function g ∈ G and for every

permutation π : K → K.

The interpretation of the distribution q is that it is the decision maker’s

belief as to the likelihood of different gain functions. In what follows, we

assume that the distribution q over gain functions is symmetric and that its

support contains at least one non-constant gain function.

2.3 Outside options

After observing the “average” material payoff corresponding to the rule R,

the decision maker may either stick to the induced material payoff, or switch

to an outside option with material gain g. The value g is random and its

distribution can depend on the realized gain function g. The realized value

of g is observed by the decision maker after she learns the average material

payoff induced by her chosen rule. We assume that g, conditional on any

gain function g, has a positive density in the interval [minG,maxG]. This

assumption excludes the trivial cases in which g is either smaller than minG

with probability one and the outside option is never chosen, as well as the

case in which it is larger than maxG with probability one and the outside

option is always selected. Note however that it encompasses situations in

which the outside option is available with positive probability only, as they

are captured by distributions of g that put positive probability on values
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less than minG. For some results we require the additional assumption that

g is statistically independent of the distribution of the gain function. We

indicate this when this is the case.

2.4 The decision maker’s problem

The decision maker (DM) knows the set of alternatives K, the distribution p

of choice sets, the distribution q of gain functions, as well as the distribution

of the outside option g conditional on any gain function g. The timing

of the decision problem is as follows. First, the DM chooses a rule in R.

Then nature chooses a gain function according to q. This gain function is

unknown to the DM at this time. The DM makes choices according to her

chosen rule in every choice set L which she faces with frequency p(L). The

DM then learns the average realized gain gp(R). The outside option value g

is realized and is observed by the DM, who can then choose the maximum

of this average realized gain and g.7 In short, the DM chooses a rule R ∈ R

in order to maximize her ex ante expected gain

IEq,g [max {gp(R),g} | g] .

The timing of events in the model is described in Table 1.

7For simplification, we abstain from considering Bayesian inferences on the gain func-

tion drawn from the observation of gp(R). We show how such inferences can be included

to the analysis in section 6.1.
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0 • DM chooses rule R

1 • gain function g and average gain gp(R) realizes

2 • outside option g realizes

3 • DM receives material gain ĝ = max{gp(R),g}

Table 1: Timeline of events

3 Results

In this section we first state the main result, Theorem 1, and then sketch its

proof by providing an intermediate result that is of interest in its own right,

Theorem 2. The full proofs of all results are given in the appendix.

3.1 Optimal choice

The main result of this paper is the following theorem.

Theorem 1

1. For every p, every optimal rule is strictly consistent.

2. If p is neutral and the outside option is statistically independent of the

distribution of the gain function then every strictly consistent rule is

optimal.

First we note that, given the assumption that q is symmetric, all choice

rules yield the exact same ex ante expected gain. In other words, absent an

outside option, all rules are equally good.
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Lemma 1 Let R,R′ ∈ R be arbitrary decision rules. Then

IEqgp(R) = IEqgp(R
′).

If all the rules give the same expected gain, they can still differ in the

level of risk they provide.

Let R, R′ be two rules. We say that R is strictly riskier than R′ if

the distribution of gp(R) under q is a strict mean-preserving spread of the

distribution gp(R
′) under q. One distribution is a strict mean-preserving

spread of another if it is a mean-preserving spread of and not identical to

the other. If µ is a distribution over rules and R′ is a rule, we say that µ is

strictly riskier than R′ if the distribution of gp(R) under q and µ is a strict

mean-preserving spread of the distribution gp(R) under q.

The following result shows that the strictly consistent rules maximize risk

in an unambiguous sense.

Theorem 2 Let R be any non strictly consistent rule. There exists a distri-

bution µ over strictly consistent rules such that µ is strictly riskier than R.

If p is neutral, then every strictly consistent rule is strictly riskier than any

non strictly consistent rule.

By Theorem 2, the DM, when considering a non strictly consistent rule,

will always find a distribution over strictly consistent rules (a mixed strategy

putting weight only on strictly consistent rules) that she strictly prefers over

the given rule. To complete the argument of point 1) of Theorem 1, we

note that, as the DM strictly prefers this distribution over strictly consistent
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rules over the given rule, she must also strictly prefer one of these strictly

consistent rules over the given rule.

To show point 2) of Theorem 1 we use the fact that, under the given

assumptions, all strictly consistent rules are equivalent.

We have thus explained how Theorem 2 can be used to prove the main

result, Theorem 1. The proof of Theorem 2, identifying how rules can be

partially ordered by the mean-preserving spread order, rests on a key lemma,

which we establish in the next subsection.

3.2 Choice rules and choice distributions

A key to a better understanding of a choice rule’s performance in the decision

maker’s problem is to consider the probability distribution over choices in K

induced by this choice rule and by the distribution over choice sets. Given

the distribution p over choice sets and a choice rule R, let λp(R)(k) denote

the overall probability with which an element k ∈ K is selected under the

rule R. it is given by:

λp(R)(k) =
∑

L:k∈R(L)

p(L)

|R(L)|
.

We call λp(R) the choice distribution associated to R. This choice distri-

bution summarizes the frequency with which each item in K is selected by

R. This distribution is known to the agent. For a fixed g, a rule’s average

payoff is entirely determined by its choice distribution, through the following
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relation:

gp(R) =
∑

k

λp(R)(k)g(k).

For g unknown, the distribution of payoffs induced by R and g is entirely

determined by λp(R) and by the distribution of g. As we shall see, it is useful

to think of the choice distribution induced by her rule as the object of choice

for the agent.

For a given distribution p over choice sets, let Λp denote the set of all

choice distributions available to the agent, i.e.,

Λp = {λp(R), R ∈ R}.

Similarly, denote by Λs
p the subset of Λp consisting of distributions induced

by strictly consistent rules, i.e.,

Λs
p = {λp(R), R ∈ Rs}.

The following result locates the choice distributions induced by consistent

rules as extreme points in the set of choice distributions. It shows that the

extreme points of the convex hull of Λp consists of points in Λs
p only.

Lemma 2 Every choice distribution in Λp is a convex combination of choice

distributions in Λs
p.

This lemma provides the key insight needed to prove Theorem 2 by estab-

lishing that the strictly consistent rules are, in the sense of the statement of

the Theorem, the most risky. This lemma is proven in appendix A. We here

provide an intuition for this result.
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Consider a strictly consistent rule Rs that ranks alternatives in decreasing

order k1, . . . , kK . Such a rule maximizes the frequency of its preferred item k1

among all rules. But this is not necessarily the only one with this property,

since every rule, strictly consistent or not, that chooses k1 whenever it is

available, does the same. But, among all rules maximizing the probability

of choosing k1, R
s maximizes the frequency of k2, and so on. This argument

shows that every strictly consistent rule induces an extreme point in the set

of achievable choice distributions. In order to show the converse property,

i.e., that every extreme choice distribution is induced by a strictly consistent

rule, it is important to remember that these extreme points are those which,

among all in Λp, are the most extreme according to some direction, i.e.,

maximize some linear functional of the form
∑

k∈K αkλp(k). Why is it that

maximizing a linear functional is always achieved by a strictly consistent

rule? Let us consider an agent who associates utility αk with choice k. For

this agent, a choice of rule R carries an expected utility
∑

k∈K αkλp(R)(k).

It should be quite intuitive that a rule that maximizes this expected payoff is

one that chooses items in decreasing order of utilities (coefficients αk) where

ties in these utilities can be broken in any arbitrary way. Hence, an extreme

point in the direction of the coefficients αk can be achieved by a strictly

consistent rule. Since this is true of all possible coefficients, all the extreme

points are achieved by strictly consistent rules.

To visualize the sets Λp and Λs
p in an example, consider the example

depicted in Figure 1. In this example the choice distributions given by strictly

consistent rules are depicted by solid dots, whereas choice distributions of

other non-strictly consistent singleton rules are depicted by hollow circles
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and squares. Note the extreme position of the choice distributions of strictly

consistent rules within the set of all choice distributions.

A B

C

b b

b b

b b

bc

bc bc

rs rs

rs

Figure 1: The set of choice distributions Λp for K = {A,B,C} and p (neutral) such

that p({A,B,C}) = p({A,B}) = p({A,C}) = p({B,C}) = 1/4. All singleton rules are

depicted. Solid circles represent the choice distributions that correspond to the strictly

consistent rules.

4 Discussion of the assumptions

Here we briefly discuss the role played by the different assumptions in our

main results. We first argue that the assumptions that p and g have full sup-

ports are not important and relaxing these changes the results only slightly.

We then discuss why some results require the assumption that p is neutral

and how the results change if q is not symmetric.
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4.1 The full support assumption for the distribution

over choice sets

Section 2 assumes that p has full support over non-singleton choice sets. Now

suppose that p does not have full support. Note first that the conclusions of

Lemmas 1 and 2 still hold. The conclusions of Theorem 2 are slightly modi-

fied: it is true that for any non strictly consistent rule there is a distribution

over strictly consistent rules that yields a mean-preserving spread in terms

of distributions of gains, but this spread does not have to be strict. The

statement of Theorem 1 needs to be adapted. There still exists an optimal

rule that is strictly consistent. This rule, however, is not unique when p does

not have full support, since choices outside the support of p do not affect

payoffs, thus are irrelevant. In this case, it can be shown that all optimal

rules must coincide with a strictly consistent rule on the support of p.

4.2 The full support assumption for the distribution

of the outside option

We also assumed that the outside option g, conditional on any gain function

g, has full support over a sufficiently large interval. Note that this assump-

tion is only relevant for Theorem 1. Relaxing this assumption changes the

conclusion of Theorem 1 in the same way as relaxing the assumption that

p has full support does: there exists a strictly consistent optimal rule, but

not only strictly consistent rules may be optimal. To see this, observe for

instance that if g takes only values outside of the range of gp(R), all rules

yield the same payoff hence are optimal.
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4.3 Statistically independent outside option

The second part of Theorem 1 relies on the assumption that the outside

option is statistically independent of the realized gain function. To see that

this assumption is needed for this result consider the simple example with

K = {a, b} and two equally likely gain functions ga, gb such that ga(a) =

gb(b) = 1 and ga(b) = gb(a) = 0. Let the outside option conditional on ga

have a distribution with probability close to one for values close to zero. Let

the outside option conditional on gb have a distribution with probability close

to one for values close to one. Let finally p be such that p({a, b}) = 1.

In this case, the strictly consistent rule Ra that ranks a ≻ b is superior

to the strictly consistent rule Rb that ranks b ≻ a. The rule Ra achieves a

payoff of one if ga realizes (with the outside option not taken) and a payoff

close to one also if gb realizes (because of the outside option). The rule Rb,

on the other hand, achieves a payoff of one when gb realizes and a payoff of

close to zero when ga realizes. Note that this is essentially the situation a

DM would be in in our dieting example if she knows her friend chose rule

Rb (which then serves as the outside option). Then she should choose rule

Ra. Note also, that if she believes her friend chose one of the two rules with

equal probability, then both rules are equally good for her.

4.4 Non-neutral distributions over choice sets

The most interesting implication of p non-neutral is the role p plays in The-

orem 2 and in Theorem 1. The example in section 5 below shows that, for

p non-neutral, yet q symmetric, it is not the case that all strictly consistent
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rules are most risky and that all strictly consistent rules are equally good and

optimal. Also, different p’s imply different most risky rules (even keeping q

the same).

4.5 Non-symmetric distribution over gain functions

We finally turn to the two assumptions made on q. Assuming that there is

at least one non-constant gain function in the support of q only avoids that

the model is trivial. The second assumption, that q is symmetric, makes the

model interesting by assuming the decision maker has a veil of ignorance. We

believe that it is under this condition that results showing the optimality of

strictly consistent rules are the most striking. Nevertheless, it is still inter-

esting to examine the implications of an asymmetric q. The first observation

in this case is that the conclusion of Lemma 1 does generally not hold if q

is not symmetric. In this case (for instance in the trivial case in which q

is supported by one payoff function only), some rules can provide a higher

expected gain than others. Interestingly, however, under the presence of an

outside option, the optimal rule is not generally the rule that maximizes the

expected gain under the most likely gain function under q, as we show in

section 5 below.

It is still true, however, that even if q is non-symmetric, if p and g have full

support, the optimal rule (as in Theorem 1) is strictly consistent. The proof

requires little adaptation. The key argument is the following. By Lemma 2,

for every non strictly consistent rule, there exists a distribution over strictly

consistent rules (as in Theorem 2) that produces a strict mean preserving
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spread in terms of choice distributions. This distribution also provides a

strict mean preserving spread of payoffs for every q. Thus, the DM will,

for any q, prefer this distribution of strictly consistent rules over the given

non strictly consistent rule. Hence, at least one of these strictly consistent

rules provides a higher expected payoff than the non strictly consistent rule.

Which of the strictly consistent rules is optimal can then depend on q and

the distribution of the outside option g.

5 An example

We study an example in detail, showing in particular how the optimal choice

rules can depend on the data of the problem when p is not neutral. We

assume here that the distribution of the outside option g is statistically

independent of the gain function.

Let K = {a, b, c}, and p be given by: p({a, b}) = p({a, c}) = 1/4, and

p({b, c}) = p({b}) = p({c}) = 1/8, p({a, b, c}) = p({a}) = 1/16. Note that b

and c are symmetrically treated in p, but that p is not neutral.

Given the symmetries in the setup, there are, without loss of generality,

only three strictly consistent rules with potentially different payoff distribu-

tions. The strict preferences corresponding to these rules are:

Ra a ≻ b ≻ c

Rb b ≻ c ≻ a

Rc c ≻ a ≻ b
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Their corresponding choice distributions are:

λ(Ra) =
5

8
a +

1

4
b+

1

8
c

λ(Rb) =
1

16
a +

9

16
b+

3

8
c

λ(Rc) =
5

16
a +

1

8
b+

9

16
c

Let us consider gain functions that attach gain one to one element in K and

zero to the other two, and q the uniform distribution over these three gain

functions. The payoff distributions of the strictly consistent rules under q are

given in the following table (one • represents a probability weight of 1/3).

R 1
16

2
16

3
16

4
16

5
16

6
16

7
16

8
16

9
16

10
16

Ra • • •

Rb • • •

Rc • • •

It can be seen that the payoff distributions of Ra and Rb are mean pre-

serving spreads of the payoff distribution of Rc, but that neither the payoff

distribution of Ra nor Rb is a mean preserving spread of the other. It follows

that it is always the case that one of the two rules Ra or Rb is optimal.

We now show that which of Ra or Rb is optimal depends on the distribu-

tion of outside options. First consider a distribution of g with full support

that puts high probability on some value x ∈ (9/16, 10/16), and for simplifi-

cation think of the limit case in which the distribution puts probability one

on x. Under Rb, the option is always chosen, hence the expected payoff is x,

while under Ra the option is chosen with probability 2/3 and the expected

payoff is 1/3 ·10/16+2/3x > x. The option value is maximal under Ra which
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is then the only optimal rule. On the other hand, if the distribution of g puts

high probability (think of it as being one) on some value x ∈ (1/16, 2/16),

the option is never chosen under Ra, which then yields an expected payoff

of 1/3, while it is chosen with probability 1/3 under Rb which yields an ex-

pected payoff of 1/3x+ 1/3 · 6/16 + 1/3 · 9/16 > 1/3. Hence in this second

case the option value is maximal under Rb which is now the only optimal

rule.

Note that ex ante all elements of K have the same chance of being the

best choice. Nevertheless it is not true that all (strictly consistent) rules are

equally good. Together with our result for p neutral and q symmetric, this

implies that p has a subtle effect on which rules are good and which are bad.

The optimal rule depends on p (just as much) as on q.

Now consider the same example but with a slightly different distribution

over gain functions, denoted q′. Let q′ be such that it is derived from q by

taking a small ǫ > 0 probability weight from all gain functions other than the

ga ∈ G with ga(a) = 1 and ga(b) = ga(c) = 0 and move that total probability

mass to that gain function ga. Thus, ga is the most likely gain function

under q′. Let g put high probability on some value x ∈ (1/16, 2/16). Then

for sufficiently small ǫ, rule Rb is strictly better than Ra, even though Ra is

the unique optimal rule for gain function ga. Thus, even if one gain function

is more likely than all others, the strictly consistent rule associated with this

gain function may not be optimal.
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6 Extensions

We point out general robustness properties of our results. We first discuss

Bayesian learning at the outside option stage. Then, we show that Theorems

1 and 2 are robust to several variations of the model.

6.1 Bayesian updating

Within our model an individual could, in principle, use Bayesian updating

given her prior belief about the distribution over all environments and her

average material payoff, in order to form a new and more informative belief

about the environment she is facing. The main model of the paper rules

out this possibility, and we show how the analysis extends to a model that

permits such updating.

Assume the material payoff a gain function produces is the sum of two

components. The first component is as modeled in Section 2. The second

is a constant additive term, added to all payoffs in all decision problems

irrespective of the chosen choice rule. This second term is highly uncertain

(at least in the mind of the DM), and follows a uniform distribution in the

interval [−x, x] for x > 0. As x tends to infinity, Bayesian updating from the

observed average material payoff provides no information about the realized

gain function. Therefore, the extended model with Bayesian updating yields

the same analysis and results as our original model.
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6.2 Costly experimentation and impatience

The model studied so far considers that if the outside option is chosen, then

the resulting utility is the one corresponding to the outside option’s gain.

This means that experimentation of a rule R is costless in the sense that

when the outside option is chosen, the payoff generated by R is irrelevant.

We can instead consider that experimentation is costly in the following sense.

The payoff from R materializes in a first stage, and the agent obtains this

payoff. Then in a second stage the agent may decide to switch to the outside

option, or not. The agent has a discount factor of 0 < δ < 1, meaning that

the objective is to maximize (1 − δ) times the expected payoff in the first

period plus δ times the expected payoff in the second period. The agent’s

problem then becomes to maximize over all rules R the total expected payoff:

IEq [IEg [max{g(R), (1− δ)g(R) + δg} | g]] .

Note that max{g(R), (1− δ)g(R)+ δg} = (1− δ)g(R)+ δmax{g(R),g}.

Thus, the DM’s objective is to maximize

(1− δ)IEq [g(R)] + δIEq [IEg [max{g(R),g} | g]] .

This new objective function differs from the one before only by the additional

first term.

By Lemma 1 all rules yield the same expected gain. The first term in

the objective function is thus irrelevant. Optimality is decided solely by the

second term. This second term, however, coincides with the original objective
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function. Therefore, all conclusions of Theorem 1 remain valid.

6.3 Finite sampling

In our main model, we consider that the agent observes the expected payoff

gp(R) = IEpg(R(L)) before deciding whether to use the rule R or take the

outside option. The payoff gp(R) can be understood as the average of g(R(L))

over an infinite sequence of realizations of the choice set L according to p.

Now consider a variation of the model in which the agent gets to observe the

average payoff 1
n

∑
t g(R(Lt)) over a finite and independent and identically

distributed sequence with law p of choice sets L1, . . . , Ln before deciding to

take the outside option or not.

In the modified model, the choice as to whether to switch to an out-

side option or not depends on a subtle Bayesian updating after observing

1
n

∑
t g(R(Lt)). Still, the DM can use the following rule: switch to g if and

only if g > 1
n

∑
t g(R(Lt)). Since by the law of large numbers, 1

n

∑
t g(R(Lt))

converges almost surely to IEpg(R(L)) when n becomes large, this switch-

ing rule yields an expected payoff going to max{gq(R),g} when n becomes

large. This implies that the choice of a rule in the modified problem gives

an expected payoff that becomes arbitrarily close to the payoff in the origi-

nal problem. Therefore, whenever all optimal rules are strictly consistent in

the original model, the same remains true with finite sampling, for n large

enough.

Note finally that the result of this section extends to any model in which

gp(R) is observed with noise as long as the noise is small enough.
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6.4 Finite number of decision problems

Another interpretation of our model is that the DM faces a finite series

of choice sets L ∈ L, where p ∈ ∆(L) is simply the empirical frequency

distribution of choice sets, and this empirical frequency distribution is ex-

ante known to the DM. For instance, the DM could know that she is facing

only two choice sets, simultaneously (as in the farming example of Section 1.1)

or one after the other without (sufficient) feedback as in the dieting example.

Then p is simply the empirical frequency that attaches a probability of one

half to each of these two choice sets with the understanding that there is

actually no randomness. That is, we do not need to appeal to a law of large

numbers as in the previous subsection and the DM receives exactly the p-

weighted sum of payoffs that accrue from her choices from the two choice

sets. If the DM then has an outside option, all our results apply.

6.5 Risk aversion

Theorem 2 states that for every non-strictly consistent rule there is a distri-

bution over strictly consistent rules that is more risky than the given rule.

Does this imply that a risk averse DM, in the absence of an outside option,

and under p neutral such that Lemma 1 holds, would prefer the non-strictly

consistent rule? The answer to this question is: it depends. It depends on

how risk aversion enters the DM’s objective function. Suppose now that the

DM does not care about material gains directly, but the utility that material

gains give her. Then one way of modeling this would be to simply transform

all gain levels g ∈ G to utility levels u(g), where u is an increasing and strictly
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concave map from IR to IR. This, however, is simply a rescaling of gain levels

and does not change the results in any way. In the dieting example this may

well be the appropriate way to capture risk aversion.

But this would not be a good model of how risk enters the problem for

the game show example. Suppose, in fact, we perform a lab experiment

(using the game show as our guide). Suppose we ask the DM to make many

choices, but all within an hour or so, and we pay her only a total amount at

the end. The DM, if she is risk averse, would probably evaluate that total

final payment with an increasing concave utility function and not each of

the individual payments. In this case, such a risk averse DM would indeed

prefer, under p neutral and no outside option, a non-strictly consistent rule.

For instance, in the example of Figure 1 any cyclical rule that chooses A out

of {A,B}, C out of {A,C}, and B out of {B,C} then provides a higher ex

ante expected utility than any strictly consistent rule. Note, however, that if

risk aversion is small enough, all strict inequalities in the comparison of rules

remain strict, so that the results of Theorem 1 still hold. In other words,

if risk aversion is sufficiently small the DM prefers a strictly consistent rule.

But if risk aversion is sufficiently high strictly consistent rules cease to be

optimal.

6.6 Heterogeneous preferences

Recent empirical evidence shows that although individual agents’ decisions

are at large consistent with a theory of preferences, these preferences vary

wildly across agents. For instance, using scanner data of household purchases,
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Echenique, Lee, and Shum (2011) find that individual households make con-

sistent choices. To quote Echenique, Lee, and Shum (2011, p. 1205), “[i]t is

fair to say that most of the empirical literature, using both field and exper-

imental data, finds relatively few violations of GARP”.8 On the other hand

Dean and Martin (2011) and Crawford and Pendakur (2013), show that house-

holds exhibit significant heterogeneity in preferences over consumption bun-

dles.9

These findings are consistent with our main results. In fact, our model

is able to account for heterogenous preferences for the two following reasons.

First, we show there are conditions on the distribution over choice sets for the

agents, under which even if all agents face the same such distribution over

choice sets, all strictly consistent rules are equally good and all other rules

suboptimal. Different agents may thus adopt different strictly consistent

rules with each of them being optimal.10 Second, we show that while all

agents have the same utility function, different distribution over choice sets

or different distributions over outside options lead to different optimal strictly

consistent rules. Hence, a strictly consistent rule that is optimal for one agent

8Dean and Martin (2016) show that this may in part be an issue of power as randomly

generated consumption sequences are also relatively close to satisfying GARP.

9Both findings of consistent and heterogenous behavior are confirmed by

Choi, Fisman, Gale, and Kariv (2007) in the context of risk-preferences, see also

Dean and Martin (2010, section 5.2.3).

10While each individual chooses one strictly consistent choice rule, the aggregate be-

havior will look like that of a random utility model as in Luce (1959) with implications

as in Block and Marschak (1960), see also Falmagne (1978) and Barberá and Pattanaik

(1986).
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may be suboptimal for another even though they both share the same utility

function and face the same uncertainty as to which alternatives are good for

them.

This interpretation of the apparent heterogeneity of preferences, thus,

leaves room for educating people about what preferences they “should” have

if scientist identify which preferences would be “objectively better” and leaves

room for paternalistic “nudging” people into the right direction.

A Proofs

A.1 Proof of Lemma 1

Recall that, for a given rule R ∈ R, the ex ante expected payoff is given by

IEqgp(R) = IEqIEpg(R(L))

=
∑

g∈G

q(g)
∑

L∈L

p(L)g(R(L))

=
∑

g∈G

q(g)
∑

L∈L

p(L)
1

|R(L)|

∑

k∈R(L)

g(k)

=
∑

L∈L

p(L)

|R(L)|

∑

k∈R(L)

∑

g∈G

q(g)g(k),

where the last equality follows from a simple change in the order of summa-

tion.

We complete the proof of Lemma 1 by showing that
∑

g∈G q(g)g(k) does

not depend on k. Since q is symmetric, for every permutation π of K we
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have

∑

g∈G

q(g)g (k) =
∑

g∈G

q(g)g(π(k)).

By averaging over all permutations π we obtain:

∑

g∈G

q(g)g(k) =
1

|K|!

∑

π

∑

g∈G

q(g)g(π(k))

=
1

|K|!

∑

g∈G

q(g)
∑

π

g(π(k))

=
1

|K|!

∑

g∈G

q(g)
∑

k′

|K|!

|K|
g(k′)

=
1

|K|

∑

k′

g(k′).

QED

A.2 Proof of Lemma 2

We prove that Λs
p contains the extreme points of the convex hull of Λp in IR|K|.

By the supporting hyperplane theorem, it suffices to prove that, for any vector

v = (v(k))k ∈ IR|K|, maxλp∈Λp

∑
k λp(k)v(k) is attained at some λp ∈ Λs

p.

Interpret v(k) as a “fictitious utility” for the choice k. For L ⊆ K, let v(L) =

1
|L|

∑
k∈L v(k). Let π be a permutation of K that orders the coordinates of

v such that v(π(1)) ≥ v(π(2)) ≥ . . . ≥ v(π(k)). Maximizing
∑

k λp(k)v(k)

over λp ∈ Λp is equivalent to maximizing the expected “fictitious utility”

∑
L∈L p(L)v(R(L)) over all rules.

The rule Rπ that selects the least element according to π in every choice

34



set, Rπ(L) = min{k, π(k) ∈ L}, maximizes each term of the sum

∑

L∈L

p(L)v(Rπ(L)),

so it maximizes the sum. Also, Rπ is strictly consistent, since it is the rule

that corresponds to the preference relation π(1) ≻ π(2) ≻ . . . ≻ π(k). Hence,

λp(R
π) belongs to Λs

p, and achieves maxλp∈Λp

∑
k λp(k)vk.

QED

A.3 Proof of Theorem 2

In order to prove Theorem 2 the following two Lemmas are useful.

Lemma 3 Let R ∈ Rs and R′ ∈ R. If λp(R
′) = λp(R), then R′ = R.

Proof: Consider w.l.o.g. the strictly consistent rule R corresponding to the

preference relation 1 ≻ 2 ≻ 3 ≻ ... ≻ |K|, and let R′ be a rule such that

λp(R
′) = λp(R). Since R(L) = {1} whenever 1 ∈ L,

λp(R)(1) =
∑

1∈L

p(L) ≥
∑

1∈L,1∈R′(L)

p(L)

|R′(L)|
= λp(R

′)(1).

Since p has full support, the inequality above is an equality if and only if

R′(L) = {1} whenever 1 ∈ L. Now we have

λp(R)(2) =
∑

2∈L,16∈L

p(L) ≥
∑

2∈L,16∈L,2∈R′(L)

p(L)

|R′(L)|
= λp(R

′)(2).

Here again, equality holds only if R′(L) = {2} whenever 2 ∈ L and 1 6∈ L.
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By induction on k, we obtain that R′(L) = {k} whenever k ∈ L and

1, . . . , k − 1 6∈ L, i.e., R′ = R.

QED

Lemma 4 For every non-constant vector (ak)k∈K ∈ IR|K| and every non-

constant gain function g, there exists a permutation gπ of g such that

∑

k

akg
π(k) 6= 0.

Proof: Consider a vector (ak)k∈K ∈ IR|K| such that for all permutations gπ

of a non-constant gain function g we have
∑

k akg
π(k) = 0. Consider the

permutation π that only exchanges two indexes, i, j ∈ K. Then we have

both
∑

k 6=i,j

akg(k) + aig(i) + ajg(j) = 0

and
∑

k 6=i,j

akg(k) + aig(j) + ajg(i) = 0.

The difference of these two expressions gives

aig(i) + ajg(j) = aig(j) + ajg(i),

or, equivalently,

(ai − aj)(g(i)− g(j)) = 0.

Thus, for every i, j ∈ K we have ai = aj or g(i) = g(j). By assumption there

exist i, j ∈ K such that g(i) 6= g(j), and thus for these we have ai = aj . Let
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a = ai = aj .

For every k 6= i, j, since we cannot have both g(k) = g(i) and g(k) = g(j)

we have either ak = ai = a or ak = aj = a. Therefore the vector (ak)k∈K is

constant.

QED

Proof of Theorem 2: Let R ∈ R \ Rs. By Lemma 2, λp(R) is a convex

combination of choice distributions in Λs
p. That is, there exists a distribution

µ over Rs such that

λp(R) =
∑

R′∈R
s

µ(R′)λp(R
′).

We now have for every g:

gp(R) =
∑

R′∈R
s

µ(R′)gp(R
′) = IEµgp(R

′).

Therefore, for every g, the distribution of gp(R
′) under µ is a mean preserving

spread of the constant gp(R). This remains true when g is taken at random

according to q: the distribution of gp(R
′) under q and µ is a mean preserving

spread of the distribution of gp(R) under q.

We now show that this mean-preserving spread is strict. To show that

it suffices to show that the mean preserving spread is strict for one g in the

support of q. That is, we need to prove that there exists g in the support of

q and R′ in the support of µ such that gp(R
′) 6= gp(R).

By Lemma 3 there exists a rule R′ ∈ Rs such that µ(R′) > 0 and λp(R
′) 6=

λp(R). Let ak = λp(R
′)(k) − λp(R)(k). Since λp(R

′) 6= λp(R), there exists
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k s.t. ak 6= 0. But then since
∑

k ak = 0, a is non-constant. Then, by q

symmetric and Lemma 4, there exist g in the support of q s.t.
∑

k∈K akg(k) 6=

0. The results follows since gp(R)− gp(R
′) =

∑
k akg(k).

To prove the final statement of Theorem 2 we note that under p neutral for

any two strictly consistent rules R′, R′′ ∈ Rs their choice distributions λp(R
′)

and λp(R
′′) are permutations of each other. But then under q symmetric the

induced distribution over material gains g is the same for both rules. QED

A.4 Proof of Theorem 1

We need to prove that, for any p and for any R′ ∈ R\Rs there is a R∗ ∈ Rs

such that the DM strictly prefers R∗ over R′, i.e., such that

IEq [IEg [max {gp(R
′),g} | g]] < IEq [IEg [max {gp(R

∗),g} | g]] .

By Theorem 2 for any R′ ∈ R \Rs there is a distribution µ over strictly

consistent rule that is strictly riskier than rule R′. Note that this distribution

µ does not depend on the realized gain function.

As the maximum is a convex function and as g, conditional on any gain

function, has positive density in the whole range of possible gain levels (in

particular it has support where the gains distributions induced by rule R′

and distribution µ differ) we have

IEq [IEg [max{gp(R
′),g} | g]] < IEq[IEg[

∑

R∈R
s

µ(R)max{gp(R),g} | g]].
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Interchanging the order of summation we have

IEq [IEg [max{gp(R
′),g} | g]] <

∑

R∈R
s

µ(R)IEq [IEg [max{gp(R),g} | g]] .

Thus, there must be at least one R∗ ∈ Rs such that

IEq [IEg [max{gp(R
′),g} | g]] < IEq [IEg [max{gp(R

∗),g} | g]] .

To finish the proof note that under p neutral all strictly consistent rules

induce the same distribution over gains. If the outside option is independent

of the gain function we then have the desired result. QED
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