The complexity of interacting automata

Olivier Gossner, Penélope Hernández \& Ron Peretz

International Journal of Game Theory

ISSN 0020-7276
Volume 45
Combined 1-2
Int J Game Theory (2016) 45:461-496
DOI 10.1007/s00182-015-0521-7

Your article is protected by copyright and all rights are held exclusively by SpringerVerlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

The complexity of interacting automata

Olivier Gossner ${ }^{1,2}$ • Penélope Hernández ${ }^{3}$. Ron Peretz ${ }^{4}$

Accepted: 22 November 2015 / Published online: 9 December 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract

This paper studies the interaction of automata of size m. We characterise statistical properties satisfied by random plays generated by a correlated pair of automata with m states each. We show that in some respect the pair of automata can be identified with a more complex automaton of size comparable to $m \log m$. We investigate implications of these results on the correlated min-max value of repeated games played by automata.

Keywords Complexity • Automata • De Bruijn sequences • Bounded memory

1 Introduction

Automata are a central model in Game Theory when it comes to modelling agents with bounded cognitive abilities (see e.g. Aumann 1981; Abreu and Rubinstein 1988; Neyman 1997; Ben-Porath 1993). But how complex are they? Early on, Neyman (1998) and Kalai and Stanford (1988) noted that if a repeated game strategy σ includes

[^0]exactly m continuation strategies, then m is also the size of the smallest automaton that can implement σ. This gives a foundation for automaton size as a measure for strategic complexity. In this paper, we take a different look at the same question by asking: how complex are phenomena that can be generated by one or several automata?

If we consider an isolated automaton of size m that generates a series of outputs in an alphabet A, then we know that this sequence is periodic of period at most m, and in fact, automata of size m can generate all such sequences. Since there are roughly speaking m^{m} such automata and $A^{m} \ll m^{m}$ such sequences, the automaton model is not economical when it comes to describing the behaviour of a single agent. The situation becomes more interesting when looking at interacting automata, which is the issue studied of this paper. Consider two agents interacting. Agent 1 is represented by an automaton σ^{1} of size m and output space A^{1} while agent 2 uses a repeated game strategy σ^{2} with output space A^{2}. The pair $\left(\sigma^{1}, \sigma^{2}\right)$ generates a sequence of outputs $a_{1}, a_{2}, \ldots, a_{t}$. An outside observer of the sequence who initially does not know (σ^{1}, σ^{2}), but knows that σ^{1} is an automaton of size at most m, forms beliefs at every stage on the next action of σ^{1}. Since σ^{1} is chosen in a finite set, the outside observer is, as t grows, eventually able to predict every action of agent 1 . Actually, we show a stronger result. Theorem 2.1, called the information constraint, holds: the total per stage entropy of the outside observer's prediction on agent 1's action is bounded by the logarithm of the number of strategies of agent 1 .

We prove several results showing that the information constraint is tight. Since the information constraint is obtained by looking solely at the number of automata of a given size, these converse results show that automata are as rich as any other model with the same number of strategies. In terms of complexity, automata generate phenomena of maximal randomness for the smallest possible number of strategies. In this sense, automata are a very economical model, i.e., do not have too many redundancies.

Our first converse result, Theorem 2.2, shows that, for any given distribution of beliefs \mathcal{P} of an outside observer on the pair of actions of agents 1 and 2 , there exist distributions over automata for agent 1 and strategies for agent 2 such that the average expected distribution of beliefs of an outside observer on both agents' actions between stages 1 and r is arbitrarily close to \mathcal{P}, as long as r is small enough so that the information constraint is satisfied. This result considers an outside observer who observes the actions of both agent 1 and 2 , while the information constraint only considers agent 1's action. However, Theorem 2.2 particularized to distributions \mathcal{P} in which the action of agent 2 is a function of the action of agent 1 shows that the information constraint provides a tight characterization of the beliefs an outside observer may have on the actions of an automaton that interacts with an outside strategy.

How about the complexity of two interacting automata, instead of one automaton interacting with an arbitrary strategy? Our second converse result shows that, when both agents are restricted to using automata of size at most m, the information constraint is tight up to a multiplicative constant that depends on the distribution of beliefs of the outside observer to be achieved. In particular, a pair of interacting automata of size m can generate a large subset of the set of sequences of period less than or equal to $m \log m$. We observe that $m \log m$ is much larger than the period m to which a single automaton is constrained. In terms of orders of magnitude, the logarithm of the number of pairs of automata is a constant times $m \log m$, and so is the logarithm
of the number of sequences that can be generated. Therefore, this result shows that automata are not only a rich model when interacting with arbitrary strategies, but also when interactions are restricted within the model.

Therefore, it appears that while an automaton in isolation is unable to produce much complex phenomena, two interacting automata can. One may wonder what is the minimal complexity of a stream of inputs that an automaton requires in order to generate complex phenomena. Our Theorem 2.4 shows that an automaton of size m provided with a deterministic periodic stream of inputs whose period length is of order $\log m$ can generate random sequences of length of order $m \log m$.

The proof of our impossibility result relies on entropy techniques introduced by Lehrer (1988) and substantially developed by Neyman and Okada (1999, 2000, 2009) and then pursued by e.g. Gossner et al. (2006) and Peretz (2012, 2013). The converse results rely on extensions of the construction of automata whose states are elements of De Bruijn sequences (Gossner and Hernández 2003, 2006). In contrast to Gossner and Hernández (2003, 2006), we are not interested here in constructing an automaton that matches a given sequence, but in the construction of a random automaton or a pair of automata that achieve desired statistical properties. We rely on a result proven independently by Ornstein (1970) and Shapira (2007) showing that the desired property is satisfied when the entropy of the generated sequence is sufficiently close to the target.

The min-max values of two-player repeated games played by automata (Ben-Porath 1993; Neyman 1985, 1998; Kalai 1990; Neyman and Spencer 2010; Neyman 2008) or by strategies of bounded recall (Lehrer 1988; Peretz 2012) is relatively well understood. However, little is known about min-max values of games played with three or more finite automata, while a few results have been obtained on three players with bounded recall (see Bavly and Neyman 2014; Peretz 2013). Our results on the set of random plays generated by finite automata have natural consequences on the min-max values of repeated games played by three automata, that was one of the question which originally motivated our study.

The paper is organised as follows. Section 2 presents the model and the main results, which are then proven in Sect. 3. Section 4 examines the min-max values of repeated games played by finite automata.

2 Model and statement of the results

Let A^{1} and A^{2} be finite action sets for agents 1 and 2 , and $A=A^{1} \times A^{2}$. It is assumed throughout that $\left|A^{1}\right|,\left|A^{2}\right| \geq 2$. A (pure, reduced) strategy for agent $i \in$ $\{1,2\}$ in the repeated interaction is a function from $\cup_{t \geq 0}\left(A^{-i}\right)^{t}$ to A^{i}, and the set of strategies for agent i is denoted Σ^{i}. A pair of strategies $\left(\sigma^{1}, \sigma^{2}\right) \in \Sigma^{1} \times \Sigma^{2}$ induces a play $\left(a_{1}, \ldots, a_{t}, \ldots\right) \in A^{\mathbb{N}}$, where $a_{t}=\left(a_{t}^{1}, a_{t}^{2}\right)$ is defined recursively by $a_{t}^{i}=\sigma^{i}\left(a_{1}^{-i}, \ldots, a_{t-1}^{-i}\right)$.

A (reduced) automaton of size m for agent i is given by a state space S of cardinality m, an initial state q_{0}, an action function $f: S \rightarrow A^{i}$, and a transition function $h: S \times$ $A^{-i} \rightarrow S$. An automaton for agent i and a sequence $\left(a_{1}^{-i}, \ldots, a_{t}^{-i}\right) \in\left(A^{-i}\right)^{t}$ induce a sequence of states $q_{0}, q_{1}, \ldots, q_{t}$ given recursively by

$$
\begin{aligned}
& q_{0} \\
& q_{1}=h\left(q_{0}, a_{1}^{-i}\right), \\
& \quad \vdots \\
& q_{t}=h\left(q_{t-1}, a_{t}^{-i}\right)
\end{aligned}
$$

Thus, an automaton defines a strategy σ^{i} by

$$
\sigma^{i}\left(a_{1}^{-i}, \ldots, a_{t}^{-i}\right)=f\left(q_{t}\right)
$$

We let $\Sigma^{i}(m)$ be the set of strategies of agent i induced by automata of size m.
For a compact metric space X, the set of probability measures on X endowed with the weak-* topology is a compact metric space which is denoted $\Delta(X)$. We abbreviate $\Delta(\Delta(X))$ by $\Delta \Delta(X)$. It is noted that throughout the paper we mainly consider finitely supported probability measures, so the weak-* topology does not play a crucial role.

Shannon's entropy of a probability measure over a finite space, $Q \in \Delta(X)$, is the quantity

$$
H(Q)=-\sum_{x \in X} Q(x) \log (Q(x)),
$$

where $\log =\log _{2}$ and $0 \log 0=0$ by continuity. The entropy of a random variable $x \in X$, denoted $H(x)$, is the entropy of its distribution. If $x \in X$ and $y \in X$ are two finitely valued random variables $H(x, y)$ denotes the entropy of the random variable $(x, y) \in X \times Y$. The entropy of x conditional on y is defined by the chain rule $H(x \mid y)=H(x, y)-H(y)$. The inequality of conditional entropy asserts that $H(x) \geq$ $H(x \mid y) \geq 0$, where the first inequality is equality if and only if x and y are independent. By taking π to be a uniform random permutation on X, the inequality of conditional entropy implies that $H(x)=H(\pi(x) \mid \pi) \leq H(\pi(x))=\log |X|$, with equality if and only if x has the uniform distribution. The mutual information of x and y is defined as $I(x ; y)=H(x)-H(x \mid y)=I(y ; x)$. By the inequality of conditional entropy, $I(x ; y) \geq 0$ with equality if and only if x and y are independent.

For $\mathcal{P} \in \Delta \Delta(X)$, we denote the expected entropy of \mathcal{P} by

$$
\bar{H}(\mathcal{P})=\int H(Q) \mathrm{d} \mathcal{P}(Q)
$$

A correlated strategy is a probability distribution $\tau \in \Delta\left(\Sigma^{1} \times \Sigma^{2}\right)$. Such τ induces a probability distribution P_{τ} over the set of infinite histories $A^{\mathbb{N}}$. For any finite history $\left(a_{1}, \ldots a_{t-1}\right)$ such that $P_{\tau}\left(a_{1}, \ldots, a_{t-1}\right)>0$ we let

$$
\begin{aligned}
& p_{t, \tau}\left(a_{1}, \ldots, a_{t-1}\right)=P_{\tau}\left(a_{t} \mid a_{1}, \ldots, a_{t-1}\right) \\
& p_{t, \tau}^{i}\left(a_{1}, \ldots, a_{t-1}\right)=P_{\tau}\left(a_{t}^{i} \mid a_{1}, \ldots, a_{t-1}\right) .
\end{aligned}
$$

That is, $p_{t, \tau}\left(a_{1}, \ldots, a_{t-1}\right)$ and $p_{t, \tau}^{i}\left(a_{1}, \ldots, a_{t-1}\right)$ represent the beliefs of an outside observer on a_{t} and on a_{t}^{i} given a_{1}, \ldots, a_{t-1}. We denote by $P_{t}(\tau) \in \Delta \Delta(A)$ and $P_{t}^{i}(\tau) \in \Delta \Delta\left(A^{i}\right)$ the laws of the random variables $p_{t, \tau}\left(a_{1}, \ldots, a_{t-1}\right)$ and of $p_{t, \tau}^{i}\left(a_{1}, \ldots, a_{t-1}\right)$ when $\left(a_{1}, \ldots, a_{t-1}\right)$ is drawn according to P_{τ}.

Finally, for $r \geq 0$, we define the r-stage expected empirical frequency of beliefs (Gossner and Tomala 2006, 2007) induced by $\tau, \mathcal{P}_{r}(\tau) \in \Delta \Delta(A)$ and $\mathcal{P}_{r}^{i}(\tau) \in$ $\Delta \Delta\left(A^{i}\right)$, by

$$
\begin{aligned}
& \mathcal{P}_{r}(\tau)=\frac{1}{r} \sum_{t=1}^{r} P_{t}, \\
& \mathcal{P}_{r}^{i}(\tau)=\frac{1}{r} \sum_{t=1}^{r} P_{t}^{i} .
\end{aligned}
$$

Note that we can express $\bar{H}\left(\mathcal{P}_{r}(\tau)\right)=\frac{1}{r} \sum_{t=1}^{r} H\left(a_{t} \mid \bar{a}_{t-1}\right)$ and $\bar{H}\left(\mathcal{P}_{r}^{i}(\tau)\right)=$ $\frac{1}{r} \sum_{t=1}^{r} H\left(a_{t}^{i} \mid \bar{a}_{t-1}\right)$.

Clearly, the sets of all possible $\mathcal{P}_{r}(\tau)$ and $\mathcal{P}_{r}^{i}(\tau)$ when $r \geq 0$ and τ is an unrestricted correlated strategy are dense in $\Delta \Delta(A)$ and $\Delta \Delta\left(A^{i}\right)$ (since any $\mathcal{P} \in \Delta \Delta(A)$ can be approximated by an average of Dirac measures $\mathcal{P}_{r}=\frac{1}{r}\left(\delta_{Q_{1}}+\cdots \delta_{Q_{r}}\right)$, and such \mathcal{P}_{r} can be implemented by correlated strategies that play Q_{i} at each stage $i=1, \ldots, r$ independently of the history up to stage (i). Our aim is to investigate what restrictions are imposed on these sets when either or both strategies are taken among subclasses of bounded complexity.

By considering the cardinality of $\Sigma^{i}(m)$ we obtain the following constraint on the possible $\mathcal{P}_{r}^{i}(\tau)$ when σ^{i} is restricted to take values in $\Sigma^{i}(m)$.
Theorem 2.1 (Information constraint). For every $m \in \mathbb{N}, \tau \in \Delta\left(\Sigma^{1}(m) \times \Sigma^{2}\right)$, and $r \in \mathbb{N}$,

$$
\frac{\bar{H}\left(\mathcal{P}_{r}^{1}(\tau)\right)}{\left|A^{2}\right|-1} \leq \frac{m \log m+o(m \log m)}{r}
$$

Our main effort is dedicated to obtaining converse results showing that the bounds provided by the information constraint are tight. In order to state possibility results precisely, it will be convenient to consider a metric that induces the weak-* topology on $\Delta \Delta(A)$. The Wasserstein metric \bar{d} serves this purpose. Let $\langle X, d\rangle$ be a metric space, e.g., $\left\langle\Delta(A),\|\cdot\|_{1}\right\rangle$. For $P, P^{\prime} \in \Delta(X)$, the \bar{d} distance between P and P^{\prime} is defined by

$$
\bar{d}\left(P, P^{\prime}\right)=\inf _{Q \in \Delta(X \times X), Q^{1}=P, Q^{2}=P^{\prime}} \int d(x, y) \mathrm{d} Q(x, y),
$$

where Q^{1} and Q^{2} denote the first and second marginals of Q respectively.
We are now in a position to state our first converse result to Theorem 2.1.
Theorem 2.2 For every $\mathcal{P} \in \Delta \Delta(A)$ and $\epsilon>0$ there exists $r_{0} \in \mathbb{N}$ such that for every $r \geq r_{0}$ there exists $m \in \mathbb{N}$ and $\tau \in \Delta\left(\Sigma^{1}(m) \times \Sigma^{2}\right)$ such that

$$
\frac{\bar{H}(\mathcal{P})}{\left|A^{2}\right|-1}+\epsilon \geq \frac{m \log m}{r}
$$

and

$$
\bar{d}\left(\mathcal{P}, \mathcal{P}_{r}(\tau)\right)<\epsilon
$$

Theorem 2.2 shows that the information constraint of Theorem 2.1 is tight when particularized to distributions \mathcal{P} such that $\bar{H}(\mathcal{P})=\bar{H}\left(\mathcal{P}^{1}\right)$, i.e., $H\left(a^{2} \mid a^{1}\right)=0(\mathcal{P}$ a.s.). In terms of expected distributions of beliefs, the set of strategies $\Sigma^{1}(m)$ is as rich as any other set of strategies of the same cardinality can be. A natural question to ask is whether this richness still holds when the set in which σ^{2} is chosen is also restricted.

In order to address this question we restrict both agents to strategies implementable through finite automata of size m. The information constraint shows that for every correlated $\tau \in \Delta\left(\Sigma^{1}(m) \times \Sigma_{2}(m)\right)$,

$$
\max _{i \in\{1,2\}}\left\{\frac{\bar{H}\left(\mathcal{P}_{r}^{-i}(\tau)\right)}{\left(\left|A^{i}\right|-1\right)}\right\} \leq \frac{m \log m+o(m \log m)}{r} .
$$

The next theorem asserts that the above bound is tight up to a constant multiplier that depends on \mathcal{P}. It shows that the information constraint is tight even when agent 2 's strategy comes from the same (space) complexity class as that of agent 1.
Theorem 2.3 For every $\mathcal{P} \in \Delta \Delta(A)$ there exists $C(\mathcal{P})>0$ such that for every $\epsilon>0$ there exists $r_{0} \in \mathbb{N}$ such that for every $r \geq r_{0}$ there exist $m \in \mathbb{N}$ and $\tau \in$ $\Delta\left(\Sigma^{1}(m) \times \Sigma^{2}(m)\right)$ such that

$$
C(\mathcal{P})+\epsilon \geq \frac{m \log m}{r}
$$

and

$$
\bar{d}\left(\mathcal{P}, \mathcal{P}_{r}(\tau)\right)<\epsilon .
$$

Note that $C(\mathcal{P})$ does not depend on ϵ. It does, however, depend on \mathcal{P}. Whether one could replace $C(\mathcal{P})$ by a constant that does not depend on \mathcal{P} (but rather just on A) is unknown. The information constraint implies that we cannot replace $C(\mathcal{P})$ by a constant $C<\max _{i \in\{1,2\}}\left\{\frac{\log \left(\left|A^{-i}\right|\right)}{\left|A^{i}\right|-1}\right\}$.

The next theorem provides a sense in which the information constraint is still tight under two further restrictions. First, the strategy of agent 2 is pure, i.e. constant on the support of τ. In particular, the strategies of 1 and 2 are now independent. Second, agent 2 uses a strategy in a much smaller space than $\Sigma^{2}(m)$, namely the space of periodic sequences ${ }^{1}$ of period at most $\mathcal{O}(\log m)$. On the other hand, Theorem 2.4 considers

[^1]only the distribution of predictions of agent 1 , and not of both 1 and 2 's actions. In this result, the sequence of actions of agent 2 can be considered a "source" which, albeit deterministic, allows agent 1 to look more unpredictable from the point of view of an outside observer.

To fix notations, for $x>0$ we denote by $A_{p}^{2}(x)$ the set of sequences of period at most x and identify each sequence $\left(a_{t}^{2}\right) \in A_{p}^{2}(x)$ with the strategy σ^{2} given by $\sigma^{2}\left(a_{1}^{1}, \ldots, a_{t-1}^{1}\right)=a_{t}^{2}$ for every $\left(a_{1}^{1}, \ldots, a_{t-1}^{1}\right)$.
Theorem 2.4 For every $\mathcal{P}^{1} \in \Delta \Delta\left(A^{1}\right)$ there exist $C=C\left(\mathcal{P}^{1}\right)>0$ such that for every $\epsilon>0$ there exists $r_{0} \in \mathbb{N}$ such that for every $r \geq r_{0}$ there exist $m \in \mathbb{N}$ and $\tau \in \Delta\left(\Sigma^{1}(m)\right) \times A_{p}^{2}(C \log m)$ such that

$$
\frac{\bar{H}\left(\mathcal{P}^{1}\right)}{\left|A^{2}\right|-1}+\epsilon \geq \frac{m \log m}{r}
$$

and

$$
\bar{d}\left(\mathcal{P}^{1}, \mathcal{P}_{r}^{1}(\tau)\right)<\epsilon .
$$

3 Proofs of the main results

3.1 Information constraint

Theorem 2.1 is a consequence of the following upper bound on the number of finite automata.

Lemma 3.1

$$
\left|\Sigma_{i}(m)\right| \leq m^{\left(\left|A^{-i}\right|-1\right) m+o(m)}
$$

Proof All elements of $\Sigma_{i}(m)$ are induced by automata with state space $\{1, \ldots, m\}$, thus are described by $q_{0} \in\{1, \ldots, m\}, f:\{1, \ldots, m\} \rightarrow A^{i}$, and $h:\{1, \ldots, m\} \times$ $A^{-i} \rightarrow\{1, \ldots, m\}$. This gives $m\left|A^{i}\right|^{m} m^{\left|A^{-i}\right| m}$ different descriptions. Since strategies are invariant to permutations of states in $\{1, \ldots, m\}$, by Stirling approximation, we have:

$$
\left|\Sigma_{i}(m)\right| \leq\left|A^{i}\right|^{m} m^{\left|A^{-i}\right| m} /(m-1)!=m^{\left(\left|A^{-i}\right|-1\right) m+o(m)} .
$$

To complete the proof of Theorem 2.1 we rely on a slight generalization of a result due to Neyman and Okada (1999) (Section 5) showing that the strategic entropy of a strategy is at most its entropy:
Lemma 3.2 Let $\tau \in \Delta\left(\Sigma^{\prime 1} \times \Sigma^{2}\right)$, where $\Sigma^{\prime 1}$ is any finite set and $r \geq 1$, then,

$$
\bar{H}\left(\mathcal{P}_{r}^{1}(\tau)\right) \leq \frac{1}{r} \log \left|\Sigma^{\prime \prime}\right|
$$

Proof Let $\tau \in \Delta\left(\Sigma^{\prime 1} \times \Sigma_{2}\right)$ be a correlated strategy. Denote by $\sigma=\left(\sigma^{1}, \sigma^{2}\right)$ a random variable with values in $\Sigma^{\prime 1} \times \Sigma^{2}$ with distribution τ and by a_{1}, \ldots, a_{r}, where $a_{t}=\left(a_{t}^{1}, a_{t}^{2}\right)$, the play induced by σ. We abbreviate $\bar{a}_{t}^{i}:=a_{1}^{i}, \ldots, a_{t}^{i}(i=1,2)$, and $\bar{a}_{t}:=\left(\bar{a}_{t}^{1}, \bar{a}_{t}^{2}\right)$. By the chain rule of entropy, the inequality of conditional entropy, and the fact that \bar{a}_{t}^{1} is a function of \bar{a}_{t-1}^{2} and σ^{1}, we have:

$$
\begin{aligned}
\sum_{t=1}^{r} H\left(a_{t}^{1} \mid \bar{a}_{t-1}\right)+H\left(a_{t}^{2} \mid \bar{a}_{t-1}, a_{t}^{1}\right) & =H\left(\bar{a}_{r}\right) \\
& \leq H\left(\sigma^{1}, \bar{a}_{r}^{2}\right)=H\left(\sigma^{1}\right)+H\left(\bar{a}_{r}^{2} \mid \sigma^{1}\right) \\
& =H\left(\sigma^{1}\right)+\sum_{t=1}^{r} H\left(a_{t}^{2} \mid \bar{a}_{t-1}, a_{t}^{1}, \sigma^{1}\right)
\end{aligned}
$$

And therefore:

$$
\bar{H}\left(\mathcal{P}_{r}^{1}(\tau)\right)=\frac{1}{r} \sum_{t=1}^{r} H\left(a_{t}^{1} \mid \bar{a}_{t-1}\right) \leq \frac{1}{r} H\left(\sigma^{1}\right) \leq \frac{1}{r} \log \left|\Sigma^{\prime 1}\right| .
$$

Theorem 2.1 is an immediate consequence of Lemmas 3.1 and 3.2.

3.2 Concatenable strategy pairs

The proofs of Theorems 2.2, 2.3 and 2.4 rely on the construction of adequate automata. These constructions are built in blocks, and larger automata are obtained by concatenation of smaller ones. We introduce a condition that ensures that such concatenations can be implemented by automata of size equal to the sum of the smaller ones.

We say that a pair given by an automaton σ^{1} of agent 1 and a strategy σ^{2} of agent 2 is r-concatenable if there exists a transition $\left(s^{1}, a^{2}\right)$ such that, in the play induced by σ^{1} and σ^{2}, the first hitting time of $\left(s^{1}, a^{2}\right)$ is r. We denote by $\left(\Sigma^{1}\left(m^{1}\right) \times \Sigma^{2}\right)^{r}$ the subset of $\Sigma^{1}\left(m^{1}\right) \times \Sigma^{2}$ consisting of all r-concatenable pairs formed by an automaton of agent 1 of size m^{1} and a strategy of agent 2 .

A pair of automata $\left(\sigma^{1}, \sigma^{2}\right)$ is r-concatenable if there exists a pair of transitions $\left(s^{1}, a^{2}\right)$ for σ^{1} and, $\left(s^{2}, a^{1}\right)$ for σ^{2} such that, in the play induced by σ^{1} and σ^{2}, the first hitting time of both $\left(s^{1}, a^{2}\right)$ and of $\left(s^{2}, a^{1}\right)$ is r. We denote by $\left(\Sigma^{1}\left(m^{1}\right) \times \Sigma^{2}\left(m^{2}\right)\right)^{r}$ the subset of $\Sigma^{1}\left(m^{1}\right) \times \Sigma^{2}\left(m^{2}\right)$ consisting of all r-concatenable pairs of automata σ^{1} of size m^{1} and σ^{2} of size m^{2}.

A pair given by an automaton σ^{1} of agent 1 and an r-periodic sequence of actions $\bar{a}^{2}=a_{1}^{2}, \ldots, a_{r}^{2}, a_{1}^{2} \ldots$ of agent 2 is r-concatenable if there exists a state s^{1} of σ^{1} such that, in the play induced by σ^{1} and \bar{a}^{2}, the first hitting time of $\left(s^{1}, a_{r}^{2}\right)$ is r. We denote by $\left(\Sigma^{1}\left(m^{1}\right) \times A_{p}^{2}\left(m^{2}\right)\right)^{r}$ the subset of $\Sigma^{1}\left(m^{1}\right) \times A_{p}^{2}\left(m^{2}\right)$ consisting of all r-concatenable pairs formed by an automaton of agent 1 of size m^{1} and a periodic sequence of actions of agent 2 whose period is at most m^{2} (in particular, the period must divide r).

An r^{\prime}-concatenable pair of an automaton and another strategy can be concatenated to an $r^{\prime \prime}$-concatenable such pair by redirecting the last transition of the former automaton to the initial state of the latter automaton. The result is an $r^{\prime}+r^{\prime \prime}$-concatenable pair whose automaton size is the sum of the sizes of the two automata. This idea is formally expressed by the following three lemmata.

Lemma 3.3 (Concatenation Lemma 1). Let $\left(\sigma_{k}^{1}, \sigma_{k}^{2}\right)_{1 \leq k \leq n}$ be a family of strategy pairs such that for every $k,\left(\sigma_{k}^{1}, \sigma_{k}^{2}\right) \in\left(\Sigma^{1}\left(m_{k}^{1}\right) \times \Sigma^{2}\left(m_{k}^{2}\right)\right)^{r_{k}}$. Let $r=\sum_{k} r_{k}$, $m^{1}=\sum_{k} m_{k}^{1}$, and $m^{2}=\sum_{k} m_{k}^{2}$. Then, there exists a strategy pair $\left(\sigma^{1}, \sigma^{2}\right) \in$ $\left(\Sigma^{1}\left(m^{1}\right) \times \Sigma^{2}\left(m^{2}\right)\right)^{r}$ such that the play induced by $\left(\sigma^{1}, \sigma^{2}\right)$ is the concatenation of the length r_{k} plays induced by $\left(\sigma_{k}^{1}, \sigma_{k}^{2}\right)_{1 \leq k \leq n}$ respectively.

Lemma 3.4 (Concatenation Lemma 2). Let $\left(\sigma_{k}^{1}, \sigma_{k}^{2}\right)_{1 \leq k \leq n}$ be a family of strategy pairs such that for every $k,\left(\sigma_{k}^{1}, \sigma_{k}^{2}\right) \in\left(\Sigma^{1}\left(m_{k}^{1}\right) \times \Sigma^{2}\right)^{r_{k}}$. Let $r=\sum_{k} r_{k}$, and $m^{1}=$ $\sum_{k} m_{k}^{1}$. Then, there exists a strategy pair $\left(\sigma^{1}, \sigma^{2}\right) \in\left(\Sigma^{1}\left(m^{1}\right) \times \Sigma^{2}\right)^{r}$ such that the play induced by $\left(\sigma^{1}, \sigma^{2}\right)$ is the concatenation of the length r_{k} plays induced by $\left(\sigma_{k}^{1}, \sigma_{k}^{2}\right)_{1 \leq k \leq n}$ respectively.

Lemma 3.5 (Concatenation Lemma 3). Let $\left(\sigma_{k}^{1}\right)_{1 \leq k \leq n}$ be a family of strategies for agent 1 and \bar{a}^{2} an m^{2}-periodic sequence for a agent 2. Suppose that for every k, $\left(\sigma_{k}^{1}, \bar{a}^{2}\right) \in\left(\Sigma^{1}\left(m_{k}^{1}\right) \times A_{p}^{2}\left(m^{2}\right)\right)^{r_{k}}$. Let $r=\sum_{k} r_{k}, m^{1}=\sum_{k} m_{k}^{1}$. Then, there exists a strategy σ^{1} for agent 1 such that $\left(\sigma^{1}, \bar{a}^{2}\right) \in\left(\Sigma^{1}\left(m^{1}\right) \times A_{p}^{2}\left(m^{2}\right)\right)^{r}$ and the play induced by $\left(\sigma^{1}, \bar{a}^{2}\right)$ is the concatenation of the length r_{k} plays induced by $\left(\sigma_{k}^{1}, \bar{a}^{2}\right)_{1 \leq k \leq n}$ respectively.

The next lemma, Lemma 3.6, utilises the concatenation lemmata in order to reduce Theorems 2.2, 2.3, and 2.4, to considering only r 's in a sequence that does not increase too fast. Formally, Lemma 3.6 consists of three lemmata, referring to the three theorems. Since the three lemmata are very similar both in their formulation and in their proofs, we state and prove them as one result.

Lemma 3.6 Let $\left\{m_{k}\right\},\left\{r_{k}\right\}_{k=1}^{\infty}$ be sequences of natural numbers, and let $\tau_{k} \in$ $\Delta\left(\Sigma^{1}\left(m_{k}\right) \times \Sigma^{2}\right)^{r_{k}} \quad\left(\right.$ respectively, $\Delta\left(\Sigma^{1}\left(m_{k}\right) \times \Sigma^{2}\left(m_{k}\right)\right)^{r_{k}}$, or $\Delta\left(\Sigma^{1}\left(m_{k}\right) \times\right.$ $\left.A_{p}^{2}\left(f\left(m_{k}\right)\right)\right)^{r_{k}}$ for some non-decreasing $f: \mathbb{N} \rightarrow \mathbb{N}$ and with pure marginal $\left.\tau_{k}^{2}\right)$.
\quad If
(i) $\sup _{k \in \mathbb{N}} r_{k}=\infty$, and
(ii) $\sup _{k \in \mathbb{N}} \frac{r_{k+1}}{r_{k}}<\infty$,
then, for every $\mathcal{P} \in \Delta \Delta(A)$ and every $\epsilon>0$ there exists $r_{0} \in \mathbb{N}$ such that for every $r>r_{0}$ there are $r^{\prime} \leq r, m \in \mathbb{N}$, and $\tau \in \Delta\left(\Sigma^{1}(m), \Sigma^{2}\right)^{r^{\prime}}$ (respectively, $\Delta\left(\Sigma^{1}(m) \times \Sigma^{2}(m)\right)^{r^{\prime}}$, or $\Delta\left(\Sigma^{1}(m) \times A_{p}^{2}(f(m))\right)^{r^{\prime}}$ with τ^{2} pure) satisfying
(a) τ is the concatenation of $\left\lfloor\frac{r}{r_{k}}\right\rfloor$ independent copies of τ_{k}, for some $k \in \mathbb{N}$,
(b) $r^{\prime}=\left\lfloor\frac{r}{r_{k}}\right\rfloor \cdot r_{k}>(1-\epsilon) r$,
(c) $m=\left\lfloor\frac{r}{r_{k}}\right\rfloor \cdot m_{k}$,
(d) $\frac{m \log m}{r^{\prime}}<\lim \sup _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}}+\epsilon$,
(e) $\bar{d}\left(\mathcal{P}, \mathcal{P}_{r^{\prime}}(\tau)\right)<\lim \sup _{k \rightarrow \infty} \bar{d}\left(\mathcal{P}, \mathcal{P}_{r_{k}}\left(\tau_{k}\right)\right)+\epsilon$.

Proof Assume w.l.o.g. that $\left\{r_{k}\right\}$ is increasing (otherwise consider an increasing subsequence). Let $\mathcal{P} \in \Delta \Delta(A), 1>\epsilon>0$, and $k_{0} \in \mathbb{N}$ (later, k_{0} will be assumed to be sufficiently large). Let $r_{0}=\left\lceil\epsilon^{-1} r_{k_{0}}\right\rceil$. For $r \geq r_{0}$, let k be the largest integer such that $r_{k} \leq \epsilon r$. Let $C=\sup _{k \in \mathbb{N}} \frac{r_{k+1}}{r_{k}}$. Let $r^{\prime}=r_{k}\left\lfloor\frac{r}{r_{k}}\right\rfloor$. It follows that

$$
r^{\prime}>(1-\epsilon) r .
$$

Let τ_{k} be the strategy assumed by the lemma. Set τ to be the concatenation of $\left\lfloor\frac{r}{r_{k}}\right\rfloor$ independent copies of τ_{k}. It follows that

$$
\mathcal{P}_{r^{\prime}}(\tau)=\mathcal{P}_{r_{k}}\left(\tau_{k}\right),
$$

and so, choosing k_{0} large enough ensures the requirement

$$
\bar{d}\left(\mathcal{P}, \mathcal{P}_{r^{\prime}}(\tau)\right)<\limsup _{k \rightarrow \infty} \bar{d}\left(\mathcal{P}, \mathcal{P}_{r_{k}}\left(\tau_{k}\right)\right)+\epsilon
$$

Let $m=\left\lfloor\frac{r}{r_{k}}\right\rfloor m_{k}$. The concatenation lemma ensures that $\tau \in \Delta\left(\Sigma^{1}(m) \times \Sigma^{2}\right)^{r^{\prime}}$. Respectively, $\tau \in \Delta\left(\Sigma^{1}(m) \times \Sigma^{2}(m)\right)^{r^{\prime}}$, or $\Delta\left(\Sigma^{1}(m) \times A_{p}^{2}(f(m))\right)^{r^{\prime}}$ with τ^{2} pure. The latter holds because $m \geq m_{k}, f$ is non-decreasing, and the definition of $A_{p}(x)$ requires that the period is at most x.

It remains to verify that $\frac{m \log m}{r^{\prime}}<\lim \sup _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}}+\epsilon$, for an appropriate choice of k_{0}. Since $C r_{k} \geq r_{k+1}>\epsilon r \geq \epsilon r^{\prime}$, we have $\left\lfloor\frac{r}{r_{k}}\right\rfloor=\frac{r^{\prime}}{r_{k}}<\epsilon^{-1} C$. Therefore,

$$
\frac{m \log m}{r^{\prime}}<\frac{m_{k} \log m_{k}}{r_{k}}+\frac{m_{k}}{r_{k}} \log \left(\epsilon^{-1} C\right)
$$

Assuming $\lim \sup _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}}<\infty$, for any k large enough, we have $\frac{m_{k} \log m_{k}}{r_{k}}<$ $\lim \sup _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}}+\frac{\epsilon}{2}$ and $\frac{m_{k}}{r_{k}} \log \left(\epsilon^{-1} C\right)<\frac{\epsilon}{2}$.

3.3 Building blocks

We define a few building blocks that will be used in the construction of the strategies required for Theorems 2.2, 2.3, and 2.4. For $l \in \mathbb{N}$ and $x \in(A)^{l}$, the empirical frequency, $\operatorname{emp}(x) \in \Delta(A)$, is defined by

$$
\operatorname{emp}(x)(a)=\frac{1}{l}\left|\left\{t \in[l]: x_{t}=a\right\}\right|
$$

where $[n]:=\{1, \ldots, n\}$.

For a rational distribution Q over A, we let $T^{Q}(l)$ be the set of sequences of elements of A of length l with empirical frequency Q. We say that l is a common denominator of Q if $T^{Q}(l) \neq \emptyset$. We use the fact that if l_{0} is a common denominator of Q, then (Cover and Thomas 2006, Chapter 11)

$$
\begin{align*}
\frac{\log \left|T^{Q}\left(l_{0}\right)\right|}{l_{0}} & \leq H(Q), \text { and } \\
\lim _{u \rightarrow \infty} \frac{\log \left|T^{Q}\left(u l_{0}\right)\right|}{u l_{0}} & =H(Q) \tag{3.1}
\end{align*}
$$

Throughout, an alphabet is a set that contains at least two distinct elements. A De Bruijn sequence of order k over a finite alphabet B is a $|B|^{k}$-periodic sequence of B symbols x_{1}, x_{2}, \ldots, such that for every $\left(b_{1}, \ldots, b_{k}\right) \in B^{k}$ there exists a unique $1 \leq t \leq|B|^{k}$ such that $\left(b_{1}, \ldots, b_{k}\right)=\left(x_{t}, \ldots, x_{t+k-1}\right)$. The existence of De Bruijn sequences was shown, e.g., by De Bruijn (1946) through the existence of Eulerian cycles in De Bruijn's graph.

The empirical frequency of De Bruijn sequences is always uniform. In order to obtain sequences with similar properties, but whose empirical frequency is arbitrary we define De Bruijn sequences over compound alphabets. For $l \geq 1$, let Y be a subset of B^{l} with at least two distinct element, called the set of words. A compound De Bruijn sequence of order k over Y is an $l|Y|^{k}$-periodic sequence of B elements obtained by the concatenation of the $|Y|^{k}$ words forming a De Bruijn sequence of order k over the alphabet Y. It is, therefore, an $l|Y|^{k}$-periodic sequence x_{1}, x_{2}, \ldots of elements in B such that for every sequence $\left(y_{1}, \ldots, y_{k}\right) \in Y^{k}$, there exists a unique $1 \leq j \leq|Y|^{k}$ such that $\left(y_{1} \cdots y_{k}\right)=\left(x_{j l+1}, \ldots, x_{j l+k l}\right)$ (where $u v$ denotes the concatenation of u and $v)$. The item $x_{t} \in B$ is the t th element, while we call $y_{j}=\left(x_{j l+1}, \ldots, x_{j l+l}\right) \in B^{l}$ the j th word, and $\left(y_{j}, \ldots, y_{j+k-1}\right) \in B^{k l}$ the j th block. When $Y=T^{Q}(l)$, the compound De Bruijn has empirical frequency Q.

The following definition provides a simple upper bound on the amount of information needed to describe a finite string of symbols given another string. We define a variant of Levenshtein's edit distance. For a set X we let $X^{<\infty}$ be the set of finite sequences of elements of X. Given a finite alphabet B, the simple edit operations on $B^{<\infty}$ are the following $2|B|+2$ operations: appending one symbol at the end or the beginning of a string, and deleting the first or last element of a string. We define the simple edit distance between two words $w, u \in B^{<\infty}$, denoted $e(w, u)$, to be the minimal number of simple edit operations needed in order to transform w to u. As usual, the distance between a string w and a set of strings $K, e(w, K)$, is the minimal distance between w and some $u \in K$. Note that, up to a multiplier of $\log (2|B|+2)$, the simple edit distance is an upper bound on the amount of information content of one string given another string.

The strategies required for Theorems 2.2, 2.3, and 2.4 all have a common structure. We next describe the common structure of the random plays induced by these strategies.

Definition 3.7 Let $Y \subset A^{l}$, for some $l \geq 1$. A random enumeration scheme over Y is a sequence of tuples $\left\langle L_{k}, G_{k}\right\rangle_{k=1}^{\infty}$, where for every $k, L_{k}=\left(w_{1}, \ldots, w_{\left|L_{k}\right|}\right)$ is a finite
sequence of strings in $A^{<\infty}$ and G_{k} is a group of permutation on $\left[\left|L_{k}\right|\right]$. In addition, there is a constant C (that does not depend on k) such that
(i) $\left|\left\{s \in\left[\left|L_{k}\right|\right]: w_{s}=w_{t}\right\}\right| \leq C \quad \forall t \in\left[\left|L_{k}\right|\right]$,
(ii) $e\left(w_{t}, Y^{k}\right) \leq C \quad \forall t \in\left[\left|L_{k}\right|\right]$,
(iii) $|Y|^{k} /\left|L_{k}\right| \leq C$,
(iv) $\left(\frac{\left|L_{k}\right|!}{\left|G_{k}\right|}\right)^{\frac{1}{L_{k} \mid}} \leq C$,
for all $k \in \mathbb{N}$.
Each element of the group G_{k} acts on the sequence L_{k} by re-ordering its elements. That is, every $\pi \in G_{k}$ transforms L_{k} into

$$
\left(w_{\pi(1)}, \ldots, w_{\pi\left(\left|L_{k}\right|\right)}\right)
$$

When $\pi \in G_{k}$ is random and uniformly distributed, the corresponding random sequence $\bar{a}(k):=w_{\pi(1)} \cdots w_{\pi\left(\left|L_{k}\right|\right)}$ is called the induced random play.

Informally, the idea is that L_{k} is approximately an enumeration of Y^{k} and G_{k} contains a substantial portion of all the permutations of L_{k}, so that the induced random play $\bar{a}(k)$ approximates a sequence of i.i.d. random variables drawn uniformly from Y. The two processes are similar in two ways: they produce similar sequences and they have similar entropy rates. Since for each element w_{t} of $L_{k}, e\left(w_{t}, Y^{k}\right) \leq C, w_{t}$ is almost entirely composed of a concatenation of strings from Y, and hence so is $\bar{a}(k)$. The next lemma says that the entropy rate of $\bar{a}(k)$ is also similar to that of a uniformly distributed independent sequence of Y-valued random variables.

Lemma 3.8 Let $\left\langle L_{k}, G_{k}\right\rangle_{k=1}^{\infty}$ be a random enumeration scheme over a compound alphabet $Y \subset A^{l}$. Let r_{k} be the total length of the random play $\bar{a}(k)$. Then,

$$
\liminf _{k \rightarrow \infty} \frac{1}{r_{k}} H(\bar{a}(k)) \geq \frac{\log |Y|}{l}
$$

Proof Let π be a uniformly random permutation from G_{k}, and $\bar{a}(k)=a_{1}, \ldots, a_{r_{k}}$ the corresponding induced play. We first estimate $\frac{1}{r_{k}} H(\pi)$ and then compare it to $\frac{1}{r_{k}} H(\bar{a}(k))$.

Let C be as in Definition 3.7. Since the length of any word in L_{k} is at least $k l-C$ and at most $k l+C$, we have

$$
\left|L_{k}\right|(k l-C) \leq r_{k} \leq\left|L_{k}\right|(k l+C)
$$

Since $\left|G_{k}\right| \geq C^{-\left|L_{k}\right|}\left|L_{k}\right|$! and $\left|L_{k}\right| \geq C^{-1}|Y|^{k}$,

$$
\begin{aligned}
\frac{1}{r_{k}} H(\pi) & =\frac{1}{r_{k}} \log \left(\left|G_{k}\right|\right) \geq \frac{\log \left(\left|L_{k}\right|!\right)}{r_{k}}-\frac{\left|L_{k}\right| \log C}{r_{k}} \geq \frac{\log \left(\left|L_{k}\right|!\right)}{\left|L_{k}\right|(k l+C)}-\frac{\log C}{k l+C} \\
& \geq \frac{\log \left(\left|L_{k}\right|\right)(1-o(1))}{k l+C} \geq \frac{k \log (|Y|)(1-o(1))}{k l+C} \geq \frac{\log |Y|}{l}(1-o(1))
\end{aligned}
$$

We now compare $\frac{1}{r_{k}} H(\bar{a}(k))$ to $\frac{1}{r_{k}} H(\pi)$ by coupling $\bar{a}(k)$ with additional random variables of low entropy, such that π can be read off from $\bar{a}(k)$ and the additional random variables. Recall that

$$
\bar{a}(k)=w_{\pi(1)} w_{\pi(2)} \cdots w_{\pi\left(\left|L_{k}\right|\right)}
$$

where $L_{k}=\left(w_{1}, w_{2}, \ldots, w_{\left|L_{k}\right|}\right)$. Denote by $|w|$ the length of the word w. For each $j \in\left[\left|L_{k}\right|\right]$, let

$$
\begin{aligned}
b_{j} & =\left|w_{\pi(j)}\right|, \text { and } \\
c_{j} & =\left|\left\{i<\pi(j): w_{i}=w_{\pi(j)}\right\}\right| .
\end{aligned}
$$

Note that from \bar{a} and $b_{1}, \ldots, b_{\left|L_{k}\right|}$ one can read off the words $w_{\pi(1)}, \ldots, w_{\pi\left(\left|L_{k}\right|\right)}$, and further from $c_{1}, \ldots, c_{\left|L_{k}\right|}$ the permutation π itself. Notice that the sequence $w_{1}, \ldots, w_{\left|L_{k}\right|}$ is not random, and therefore is treated as given information. The values of each b_{j} range between $k l-C$ and $k l+C$, and the values of each c_{j} are in [C]. It follows that

$$
\begin{aligned}
\frac{1}{r_{k}} H(\bar{a}(k)) & \geq \frac{1}{r_{k}} H(\pi)-\frac{1}{r_{k}}\left[H\left(b_{1}, \ldots, b_{\left|L_{k}\right|}\right)+H\left(c_{1}, \ldots, c_{\left|L_{k}\right|}\right)\right] \\
& \geq \frac{\log |Y|}{l}(1-o(1))-\frac{\left|L_{k}\right|}{r_{k}} \log ((2 C+1) C) \geq \frac{\log |Y|}{l}(1-o(1))
\end{aligned}
$$

We now describe a framework within which one can construct schemes of automata that are naturally associated with certain random enumeration schemes.

Definition 3.9 A De Bruijn automaton scheme for agent i is a tuple $\Xi=$ $\left\langle\mathcal{P}, l,\left\{x(k), L_{k},\left(s_{t}(k), z_{t}(k), a_{t}^{-i}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle$ where

- $\mathcal{P}=\sum_{j} q_{j} \delta_{Q_{j}} \in \Delta \Delta(A)$ is a finitely supported rational distribution over rational beliefs.
- $l \in \mathbb{N}$ is such that each $l_{j}:=q_{j} l$ is a common denominator of Q_{j} (in particular, l_{j} is an integer).
Let $Y=\times{ }_{j} T^{Q_{j}}\left(l_{j}\right)$. For every $k \in \mathbb{N}$,
- $x=x(k)=\left(x_{1}, \ldots, x_{m_{k}}\right)$ is a compound De Bruijn sequence of order k over Y, where $m_{k}=l|Y|^{k}$.
- $L_{k}=\left(w_{1}, \ldots, w_{\left|L_{k}\right|}\right)$ is a sequence of A-words such that $\sup _{k \in \mathbb{N}} m_{k} /\left|L_{k}\right|<\infty$.
- For $t=1, \ldots,\left|L_{k}\right|$,
- $s_{t}=s_{t}(k) \in\left[m_{k}\right]$,
- $z_{t}=z_{t}(k) \in[l k] \backslash[l(k-1)]$, and
$-a_{t}^{-i}=a_{t}^{-i}(k) \in A^{-i} \backslash\left\{x_{s_{t}}^{-i}\right\}$,
such that

$$
w_{t}=x_{s_{t}-z_{t}} \cdots x_{s_{t}-1}\left(x_{s_{t}}^{i}, a_{t}^{-i}\right),
$$

and $\left(s_{t}, a_{t}^{-i}\right) \neq\left(s_{t^{\prime}}, a_{t^{\prime}}^{-i}\right)$ for all $t \neq t^{\prime}$.

- G_{k} is a group of permutations on $\left[\left|L_{k}\right|\right]$, with $\sup _{k \in \mathbb{N}}\left(\frac{\left|L_{k}\right|!}{\left|G_{k}\right|}\right)^{\frac{1}{\left|L_{k}\right|}}<\infty$.

Definition 3.10 Given a De Bruijn automaton scheme Ξ, an automaton $\sigma_{\Xi}^{i}(k) \in$ $\Sigma^{i}\left(m_{k}\right)$ is defined by ${ }^{2}$:

- the state space $\left[m_{k}\right]$;
- the initial state $s_{1}-z_{1} \bmod m_{k}$;
- the action function $f(s)=x_{s}^{i}$;
- the transition function
$h\left(s, a^{-i}\right)= \begin{cases}s+1 \bmod m_{k} & \text { if } a^{-i}=x_{s}^{-i}, \\ s_{t+1}-z_{t+1} \bmod m_{k} & \text { if } s=s_{t} \text { and } a^{-i}=a_{t}^{-i} \text { for some } t \in\left[\left|L_{k}\right|\right], \\ \text { unspecified } & \text { otherwise. }\end{cases}$
A transition of the first type is called a +1 transition and a transition of the second type a jump transition.

Note that the jump transitions are well defined, since it is assumed that the pairs $\left(s_{t}, a_{t}^{-i}\right)$ are distinct.

The rest of Sect. 3.3 presents relevant properties of random enumeration schemes. For readability, the De Bruijn automaton schemes are assumed to be for agent 1. Of course, similar properties hold for random enumeration schemes for agent 2.

With the notation of Definition 3.9, the concatenation of the elements of L_{k} is denoted

$$
\bar{a}_{\Xi}(k)=w_{1} w_{2} \cdots w_{\left|L_{k}\right|} .
$$

The next lemma ensures that the strategy $\sigma_{\Xi}^{1}(k)$ generates the desired play $\bar{a}_{\Xi}(k)$, has the necessary concatenability properties and provides the relevant upper bound on the state space cardinality.
Lemma 3.11 Let $\Xi=\left\langle\mathcal{P}, l,\left\{x(k), L_{k},\left(s_{t}(k), z_{t}(k), a_{t}^{2}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle$ be a De Bruijn automaton scheme for agent 1, then:
(i) the induced strategy $\sigma_{\Xi}^{1}(k)$ is consistent with the play $\bar{a}_{\Xi}(k)$,
(ii) the induced strategies $\sigma_{\Xi}^{1}(k)$ coupled with (any strategy consistent with) $\bar{a}_{\Xi}(k)$ is r_{k}-concatenable, and
(iii) $\lim \sup _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}} \leq \bar{H}(\mathcal{P}) \lim \sup _{k \rightarrow \infty} \frac{m_{k}}{\left|L_{k}\right|}$.

[^2]Proof Part (i) follows from the definition of $\sigma_{\Xi}^{1}(k)$. In the beginning and after each jump transition, $\sigma_{\Xi}^{1}(k)$ is in state $s_{t}-z_{t}$. In the next z_{t+1} periods $\bar{a}_{\Xi}(k)$ prescribes the action profiles $\left(x_{s_{t}-z_{t}+j-1}: j \in\left[z_{t}\right]\right)$. Provided $\sigma_{\Xi}^{1}(k)$ is at state $s_{t}-z_{t}+j-1$ it plays $x_{s_{t}-z_{t}+j-1}^{1}$, as required. Provided agent 2 , too, plays as required, $x_{s_{t}-z_{t}+j-1}^{2}$, a " +1 " transition to $s_{t}-z_{t}+j$ occurs. After z_{t} steps, $\sigma_{\Xi}^{1}(k)$ is at state s_{t}. At that time $\bar{a}_{\Xi}(k)$ prescribes the action profile $\left(x_{s_{t}}^{1}, a_{t}^{2}\right)$. If agent 2 plays a_{t}^{2}, then a jump transition to $s_{t+1}-z_{t}$ occurs, and the result follows by induction on t.

Part (ii) holds since the play ends at a jump transition and each jump transition occurs at most once by Definition 3.9.

For Part (iii) note that $r_{k}=\sum_{t=1}^{\left|L_{k}\right|} z_{t}+1 \geq\left|L_{k}\right|(k-1) l$. Thus,

$$
\frac{m_{k} \log m_{k}}{r_{k}} \leq \frac{\log m_{k}}{k l} \frac{k}{k-1} \frac{m_{k}}{\left|L_{k}\right|}
$$

It remains to show that $\lim \sup \frac{\log m_{k}}{k l} \leq \bar{H}(\mathcal{P})$. Recall that $m_{k}=l|Y|^{k}$. Since $\log |Y|=$ $\sum_{i} \log \left|T^{Q_{i}}\left(l_{i}\right)\right| \leq \sum_{i} l_{i} H\left(Q_{i}\right)=l \bar{H}(\mathcal{P})$,

$$
\frac{\log m_{k}}{k l}=\frac{\log |Y|}{l}+\frac{\log l}{k l} \leq \bar{H}(\mathcal{P})+\frac{\log l}{k l} \underset{k \rightarrow \infty}{ } \bar{H}(\mathcal{P}) .
$$

A permutation $\pi \in G_{k}$ acts on the k th component of Ξ by transforming $L_{k}=$ $\left(w_{1}, \ldots, w_{\left|L_{k}\right|}\right)$ into $\left(w_{\pi(1)}, \ldots, w_{\pi\left(\left|L_{k}\right|\right)}\right), s_{t}$ into $s_{\pi(t)}, z_{t}$ into $z_{\pi(t)}$, and a_{t}^{2} into $a_{\pi(t)}^{2}$ for $t=1, \ldots,\left|L_{k}\right|$. This transformation defines another De Bruijn automaton scheme denoted $\pi . \Xi$. The following lemma describes the relation between De Bruijn automaton schemes and random enumeration schemes.

Lemma 3.12 Let

$$
\Xi=\left\langle\mathcal{P}=\sum_{j} \frac{l_{j}}{l} \delta_{Q_{j}}, l,\left\{x(k), L_{k},\left(s_{t}(k), z_{t}(k), a_{t}^{2}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle
$$

be a De Bruijn automaton scheme for agent 1. Then:
(i) $\left\langle L_{k}, G_{k}\right\rangle_{k=1}^{\infty}$ is a random enumeration scheme over $Y=\times{ }_{j} T^{Q_{j}}\left(l_{j}\right)$, and
(ii) $\sigma_{\pi . \Xi}^{1}$ is consistent with the play $w_{\pi(1)} w_{\pi(2)} \cdots w_{\pi\left(\left|L_{k}\right|\right)}$ (where $L_{k}=\left(w_{1}, w_{2}\right.$, $\left.\ldots, w_{\left|L_{k}\right|}\right)$).

Proof Part (ii). By the definition of π. Ξ,

$$
\bar{a}_{\pi . \Xi}(k)=w_{\pi(1)} w_{\pi(2)} \cdots w_{\pi\left(\left|L_{k}\right|\right)} .
$$

By Lemma 3.11, $\sigma_{\pi . \Xi}^{1}$ is consistent with $\bar{a}_{\pi . \Xi}(k)$.
Part (i). We need to verify (i)-(iv) from Definition 3.7. (iii) and (iv) follow from Definition 3.9, since $m_{k}=l|Y|^{k}$ and $\sup _{k \in \mathbb{N}} m_{k} /\left|L_{k}\right|<\infty$.

We prove (ii). Let $L_{k}=\left(w_{1}, \ldots, w_{\left|L_{k}\right|}\right)$. Each word w_{t} consists of z_{t} consecutive elements $x_{s_{t}-z_{t}}, \ldots, x_{s_{t}-1}$ of x followed by a single symbol. Since $\left|z_{t}-k l\right| \leq l$, there is some block $B=[(u+k) l] \backslash[u l]$ such that the symmetric difference between B and $\left\{s_{t}-z_{t}, \ldots, s_{t}-1\right\}$ is at most $2 l$; therefore the simple edit distance between w_{t} and x_{B} is at most $2 l+1$. (ii) then holds since $x_{B} \in Y^{k}$.

We finally show (i). We must bound from above the multiplicity of elements in L_{k}. Fix a mapping $t \mapsto B(t)$ as described above, i.e., $B(t)=[(u+k) l] \backslash[u l]$ such that $s_{t} \in[(u+k) l] \backslash[(u+k-1) l]$. We must bound from above

$$
\max _{t_{0} \in\left[\left|L_{k}\right|\right]}\left|\left\{t: w_{t}=w_{t_{0}}\right\}\right|,
$$

which is clearly not more than

$$
\left(\max _{B}|\{t: B(t)=B\}|\right)\left(\max _{t_{0} \in\left[\left|L_{k}\right|\right]}\left|\left\{B(t): w_{t}=w_{t_{0}}\right\}\right|\right) .
$$

We bound each one of the above factors from above by functions of l and $|A|$ that do not depend on k. We begin with the first factor, the number of indices t mapped to any given block B. Since $s_{t} \in[(u+k) l] \backslash[(u+k-1) l]$, there are only l possible values for s_{t}. Since each $\left(s_{t}, a_{t}^{2}\right)$ is unique, the multiplicity of each s_{t} is at most $\left|A^{2}\right|-1$; therefore the number of indices mapped to any given B is at most $l\left(\left|A^{2}\right|-1\right)$.

Now, fix $t_{0} \in\left[\left|L_{k}\right|\right]$. We bound from above the cardinality of $\left\{B(t): w_{t}=w_{t_{0}}\right\}$. Since the simple edit distance between w_{t} and $x_{B(t)}$ is at most $2 l+1$, for any t, we have that if $w_{t}=w_{t_{0}}$ then $x_{B(t)}$ belongs to the ball of radius $4 l+2$ around $x_{B\left(t_{0}\right)}$. Since the size of that ball is a function of l and $|A|$ (but not k) and since x_{B} determines B, the cardinality of $\left\{B(t): w_{t}=w_{t_{0}}\right\}$ is bounded (by a function of l and $|A|$).

A De Bruijn automaton scheme allows us to implement a random play with certain properties. Lemma 3.13 shows that these properties guarantee that the expected distribution of beliefs induced by the play is close to the target distribution \mathcal{P}.

Lemma 3.13 Let Ξ be a De Bruijn automaton scheme for agent 1 and $\mathcal{P}=$ $\sum_{i=1}^{n} q_{i} \delta_{Q_{i}}$. Let r_{k} be the length of $\bar{a}_{\Xi}(k)$. For every $k \in \mathbb{N}$, let $\bar{a}(k)=\bar{a}_{\pi . \Xi}(k)$ be the random play obtained by taking a uniform random permutation $\pi \in G_{k}$. The corresponding mixture of strategies $\sigma_{\pi . \Xi}^{1}(k)$ coupled with any $\bar{a}_{\pi . \Xi}(k)$ consistent strategies for agent 2 defines a correlated strategy τ_{k}.
(i) The play induced by τ_{k} is $\bar{a}(k)$.
(ii) The strategy τ_{k} is in $\Delta\left(\Sigma^{1}\left(m_{k}\right) \times \Sigma^{2}\right)^{r_{k}}$.
(iii) Let $Q \in \Delta(A \times[n])$ be given by $Q(a, i)=q_{i} Q_{i}(a)$. The random play $\bar{a}=\bar{a}(k)$ can be coupled with a random $[n]$-valued sequence $\bar{b}=b_{1}, \ldots, b_{r_{k}}$, such that - $\lim _{k \rightarrow \infty}\|Q-\mathbb{E}[\operatorname{emp}(\bar{a}, \bar{b})]\|=0$,

- $\lim _{k \rightarrow \infty} \frac{1}{r_{k}} H(\bar{b})=0$.
(iv) $\liminf _{k \rightarrow \infty} \frac{1}{r_{k}} H(\bar{a}(k)) \geq \bar{H}(\mathcal{P})-f(l)$, where $f(l) \rightarrow 0$, as $l \rightarrow \infty$, and f depends only on \mathcal{P}.
(v) $\lim \sup _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}} \leq \bar{H}(\mathcal{P}) \lim \sup _{k \rightarrow \infty} \frac{m_{k}}{\left|L_{k}\right|}$.

Proof Parts (i), (ii), and (v) immediately follow from Lemmas 3.11 and 3.12.
We prove Part (iv). Lemma 3.12 (i) says that $\left\langle L_{k}, G_{k}\right\rangle_{k=1}^{\infty}$ is a random enumeration
 (3.1), $\lim _{l \rightarrow \infty} \frac{\log |Y|}{l}=\bar{H}(\mathcal{P})$.

It remains to verify Part (iii). Associate with any state of $s \in\left[m_{k}\right]$ a number $i=i(s) \in[n]$, defined by

$$
s \in\left[l_{1}+\cdots+l_{i}\right] \backslash\left[l_{1}+\cdots+l_{i-1}\right] \bmod l
$$

Recall that the induced play is of the form $\bar{a}=w_{1} w_{2} \cdots w_{\left|L_{k}\right|}$, where $w_{t}=$ $\left(x_{s_{t}^{1}-z_{t}}, \ldots, x_{s_{t}-1}, a_{t}\right)$, for some $a_{t} \in A$. Let $b_{t}=i\left(s_{t}-z_{t}\right) \cdots i\left(s_{t}-1\right) 1$, and $\bar{b}=\left(b_{1}, b_{2}, \ldots, b_{\left|L_{k}\right|}\right)$. Since $\left|w_{t}\right|=\left|b_{t}\right|=z_{t}+1>(k-1) l$, and since the empirical distribution of any word $x_{t l+1} \ldots x_{t l+l}$ coupled with $i(t l+1) \ldots i(t l+l)$ is Q, $\left\|\operatorname{emp}\left(w_{t}, b_{t}\right)-Q\right\|=\mathcal{O}\left(k^{-1}\right)$; therefore $\|Q-\mathbb{E}[\operatorname{emp}(\bar{a}, \bar{b})]\|=\mathcal{O}\left(k^{-1}\right)$.

The sequence \bar{b} can be read off from the random variables $\left\{z_{t}\right\}$ and $\left\{s_{t} \bmod l\right\}$, $t=1, \ldots,\left|L_{k}\right|$. Since these random variables take values in sets of size l,

$$
\frac{1}{r_{k}} H(\bar{b}) \leq \frac{1}{r_{k}} H\left(z_{t}, s_{t} \bmod l: 1 \leq t \leq\left|L_{k}\right|\right) \leq \frac{2\left|L_{k}\right| \log l}{r_{k}} \leq \frac{2 \log l}{(k-1) l} \rightarrow 0,
$$

as $k \rightarrow \infty$.

3.4 Information criterion

The following lemma will allow us to determine whether a distribution of beliefs is \bar{d}-close to a target Dirac distribution.

Lemma 3.14 Let A be a finite set and $H: \Delta(A) \rightarrow \mathbb{R}$ continuous and strictly concave. For every $\epsilon>0$ there is $\delta>0$ such that for every $Q \in \Delta(A)$ and $\mathcal{P}=\sum_{i} q_{i} \delta_{Q_{i}} \in$ $\Delta \Delta(A)$, if
(i) $\left\|Q-\sum_{i} q_{i} Q_{i}\right\|<\delta$, and
(ii) $\sum_{i} q_{i} H\left(Q_{i}\right)>H(Q)-\delta$,
then

$$
\bar{d}\left(\delta_{Q}, \mathcal{P}\right)<\epsilon .
$$

Lemma 3.14 has been shown by several authors independently, see for instance Lemma 1 in Ornstein (1970) and Lemma 22 in Shapira (2007).

A distribution over beliefs can be represented by a pair of random variables. Let x be a random variable taking values in a finite set X. Define $\mathrm{p}(x) \in \Delta \Delta(X)$ to be the Dirac measure supported on the distribution of x. For an event of positive probability E, define $\mathrm{p}(x \mid E) \in \Delta \Delta(X)$ to be the Dirac measure supported on the distribution of x conditional on E. Let y be another random variable taking values in a finite set Y.

The distribution over beliefs $\mathrm{p}(x \mid y) \in \Delta \Delta(X)$ is defined by

$$
\sum_{\mathbf{y} \in Y} \mathbf{P}(y=\mathbf{y}) \mathbf{p}(x \mid y=\mathbf{y})
$$

Lemma 3.14 implies that for every $\epsilon>0$ there is $\delta=\delta(\epsilon,|X|)$, such that

$$
I(x ; y)<\delta \Rightarrow \bar{d}(\mathrm{p}(x), \mathrm{p}(x \mid y))<\epsilon
$$

Let z be a third random variable. By Markov's inequality we have

$$
\begin{equation*}
I(x ; y \mid z)<\delta^{2} \Rightarrow \bar{d}(\mathrm{p}(x \mid z), \mathrm{p}(x \mid y, z))<\epsilon+\delta \tag{3.2}
\end{equation*}
$$

Explanation: Assume the left hand side of (3.2) holds. Let $Z=\{\zeta: I(x ; y \mid z=\zeta)<\delta\}$. By Markov's inequality, $\mathbf{P}(z \notin Z) \leq \delta^{-1} I(x ; y \mid z)<\delta$. For every $\zeta \in Z$, there is a coupling $\mathcal{Q}_{\zeta} \in \Delta(\Delta(X) \times \Delta(X))$ with marginals $p(x \mid z=\zeta)$ and $p(x \mid y, z=\zeta)$, such that $\int\|x-y\| \mathrm{d} \mathcal{Q}_{\zeta}(x, y)<\epsilon$. For $\zeta \notin Z$, let $\mathcal{Q}_{\zeta} \in \Delta(\Delta(X) \times \Delta(X))$ be an arbitrary coupling of $p(x \mid z=\zeta)$ and $p(x \mid y, z=\zeta)$. The distribution $\mathcal{Q}=\sum_{\zeta} \mathbf{P}(z=\zeta) \mathcal{Q}_{\zeta}$ is a coupling of $p(x \mid z)$ and $p(x \mid y, z)$, and

$$
\begin{aligned}
\int\|x-y\| \mathrm{d} \mathcal{Q}(x, y) & =\sum_{\zeta \in Z} \int\|x-y\| \mathrm{d} \mathcal{Q}_{\zeta}(x, y) \\
& <\mathbf{P}(z \in \zeta) \epsilon+\mathbf{P}(\zeta \notin Z)<\epsilon+\delta
\end{aligned}
$$

Lemma 3.15 (Information Criterion). Let A be a finite alphabet. For every $\epsilon>0$ there is $\delta>0$ such that for every $n \geq 1$, every $Q \in \Delta(A \times[n])$, every $r>0$, and every random play $\bar{a}=a_{1}, \ldots, a_{r}$, if \bar{a} can be coupled with an $[n]$-valued random sequence $\bar{b}=b_{1}, \ldots, b_{r}$ such that
(i) $\|Q-\mathbb{E}[\operatorname{emp}(\bar{a}, \bar{b})]\|<\delta$,
(ii) $\frac{1}{r} H(\bar{a} \mid \bar{b})>H(x \mid y)-\delta$, where $(x, y) \sim Q$,
(iii) $\frac{1}{r} I(\bar{a} ; \bar{b})<\delta$,
then

$$
\bar{d}\left(\mathrm{p}(x \mid y), \quad \mathcal{P}_{r}(\bar{a})\right)<\epsilon .
$$

Note that the conclusion of Lemma 3.15 refers to the distribution of beliefs of an observers who observes only \bar{a} and does not observe the auxiliary random variable \bar{b}. Also note that the case of $n=1$ is equivalent to Lemma 3.14 by setting $\mathcal{P}=\mathcal{P}_{r}(\bar{a})$.

Proof Since the mapping that maps the distribution of (x, y) to $\mathrm{p}(x \mid y)$ is continuous as a function form $\Delta(A \times[n])$ to $\Delta \Delta(A)$, we may assume w.l.o.g. that $\mathbb{E}[\operatorname{emp}(\bar{a}, \bar{b})]=Q$. Let $\epsilon>0$. By (3.2) we can take $\delta>0$ such that

$$
I(a ; b \mid c)<\delta \Rightarrow \bar{d}(\mathrm{p}(a \mid c), \mathrm{p}(a \mid b, c))<\frac{1}{2} \epsilon,
$$

for any random variables a, b, c, where a takes values in A.
Let t be a random variable uniformly distributed in $[r]$ independently of (\bar{a}, \bar{b}). Let $\mathcal{H}_{t}=a_{1}, \ldots, a_{t}$. Note that $\left(a_{t}, b_{t}\right) \sim Q$, and $\mathcal{P}_{r}(\bar{a})=\mathrm{p}\left(a_{t} \mid \mathcal{H}_{t-1}, t\right)$.

By the triangle inequality

$$
\begin{aligned}
\bar{d}\left(\mathrm{p}\left(a_{t} \mid b_{t}\right), \mathrm{p}\left(a_{t} \mid \mathcal{H}_{t-1}, t\right)\right) \leq & \bar{d}\left(\mathrm{p}\left(a_{t} \mid b_{t}\right), \mathrm{p}\left(a_{t} \mid b_{t}, \mathcal{H}_{t-1}, t\right)\right) \\
& +\bar{d}\left(\mathrm{p}\left(a_{t} \mid b_{t}, \mathcal{H}_{t-1}, t\right), \mathrm{p}\left(a_{t} \mid \mathcal{H}_{t-1}, t\right)\right)
\end{aligned}
$$

By the choice of δ, the proof will be concluded if we prove two inequalities:

$$
\begin{align*}
& I\left(a_{t} ; \mathcal{H}_{t-1}, t \mid b_{t}\right)<\delta, \tag{3.3}\\
& I\left(a_{t} ; b_{t} \mid \mathcal{H}_{t-1}, t\right)<\delta . \tag{3.4}
\end{align*}
$$

For (3.3):

$$
\begin{aligned}
I\left(a_{t} ; \mathcal{H}_{t-1}, t \mid b_{t}\right) & =H\left(a_{t} \mid b_{t}\right)-H\left(a_{t} \mid \mathcal{H}_{t-1}, t, b_{t}\right) \\
& \leq H\left(a_{t} \mid b_{t}\right)-H\left(a_{t} \mid \mathcal{H}_{t-1}, t, \bar{b}\right) \\
& =H\left(a_{t} \mid b_{t}\right)-\frac{1}{r} H(\bar{a} \mid \bar{b}) \\
& <\delta
\end{aligned}
$$

where the last inequality is provided by condition (ii) of the lemma.
For (3.4):

$$
\begin{aligned}
I\left(a_{t} ; b_{t} \mid \mathcal{H}_{t-1}, t\right) & =H\left(a_{t} \mid \mathcal{H}_{t-1}, t\right)-H\left(a_{t} \mid \mathcal{H}_{t-1}, t, b_{t}\right) \\
& \leq \frac{1}{r}[H(\bar{a})-H(\bar{a} \mid \bar{b})] \\
& =\frac{1}{r} I(\bar{a} ; \bar{b}) \\
& <\delta
\end{aligned}
$$

where the last inequality is provided by condition (iii) of the lemma.

3.5 Main constructive lemma

The next lemma plays an important role in the proofs of Theorems 2.2, 2.3, and 2.4.
Lemma 3.16 Let $\mathcal{P} \in \Delta \Delta(A)$ be a finitely supported rational distribution over rational beliefs. For every $\epsilon>0$, there is $l_{0} \in \mathbb{N}$, such that for every $l \geq l_{0}$ and every De Bruijn automaton scheme for agent 1

$$
\Xi=\left\langle\mathcal{P}, l,\left\{x(k), L_{k},\left(s_{t}(k), z_{t}(k), a_{t}^{2}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle
$$

the following holds:

With the notation of Definition 3.9, denote the induced joint strategy $\tau_{k} \in$ $\Delta\left(\Sigma^{1}\left(m_{k}\right), \Sigma^{2}\right)^{r_{k}}$. Suppose $C=\liminf _{k \rightarrow \infty} \frac{\left|L_{k}\right|}{m_{k}}>0$. There is $r_{0} \in \mathbb{N}$ such that for every $r \geq r_{0}$, there is $k \geq 1$ such that $r^{\prime}=\left\lfloor\frac{r}{r_{k}}\right\rfloor \cdot r_{k} \geq(1-\epsilon) r$ and the concatenation of $\left\lfloor\frac{r}{r_{k}}\right\rfloor$ independent copies of $\tau_{k}, \tau \in \Delta\left(\Sigma^{1}(m), \Sigma^{2}\right)^{r^{\prime}}\left(m=\left\lfloor\frac{r}{r_{k}}\right\rfloor \cdot m_{k}\right)$, satisfies

$$
\frac{\bar{H}(P)}{C}+\epsilon \geq \frac{m \log m}{r}
$$

and

$$
\bar{d}\left(\mathcal{P}, \mathcal{P}_{r}(\tau)\right)<\epsilon
$$

Proof Let $\mathcal{P}=\sum_{i=1}^{n} q_{i} \delta_{Q_{i}}$ be a finitely supported rational distribution over rational beliefs, and let $\epsilon>0$. Let $\delta=\delta\left(\frac{\epsilon}{3}\right)>0$ be given by Lemma 3.15. Let l be a common denominator of \mathcal{P}, such that $f(l)$ of Lemma 3.13 (iv) is less than δ.

Let

$$
\Xi=\left\langle\mathcal{P}, l,\left\{x(k), L_{k},\left(s_{t}(k), z_{t}(k), a_{t}^{2}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle
$$

be De Bruijn automaton scheme for agent 1 .
Lemma 3.13 provides strategies $\tau_{k} \in \Delta\left(\Sigma^{1}\left(m_{k}\right) \times \Sigma^{2}\right)^{r_{k}}$. The same lemma ensures that $\lim \sup _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}} \leq \frac{\tilde{H}(\mathcal{P})}{C}$. Lemma 3.13 (iii)-(iv) and the choice of l ensure that the antecedents of Lemma 3.15 hold w.r.t. δ, for every k large enough. The choice of δ was made such that Lemma 3.15 guarantees that $\bar{d}\left(\mathcal{P}, \mathcal{P}_{r_{k}}\left(\tau_{k}\right)\right)<\frac{\epsilon}{3}$, for every k large enough.

We next utilise Lemma 3.6 to extends the construction to strategies that induce a play of any length $r>r_{0}$, for some $r_{0}>0$. The antecedents of Lemma 3.6
(i) $\sup _{k \in \mathbb{N}} r_{k+1}=\infty$, and
(ii) $\sup _{k \in \mathbb{N}} \frac{r_{k+1}}{r_{k}}<\infty$
hold since, by Definition 3.9,

$$
\begin{aligned}
(k-1) l L_{k} & \leq r_{k} \leq k l L_{k} \\
(C-o(1)) m_{k} & \leq L_{k} \leq\left(\left|A^{2}\right|-1\right) m_{k} \\
m_{k} & =l|Y|^{k} \\
& \quad \text { and }|Y| \text { depends only on } l \text { and } \mathcal{P} .
\end{aligned}
$$

It follows that there is $r_{0} \geq 0$ such that for every $r \geq r_{0}$, there is $k \geq 1$ such that $r^{\prime}=\left\lfloor\frac{r}{r_{k}}\right\rfloor \cdot r_{k} \geq(1-\epsilon) r$ and the concatenation of $\left\lfloor\frac{r}{r_{k}}\right\rfloor$ independent copies of τ_{k}, $\tau \in \Delta\left(\Sigma^{1}(m), \Sigma^{2}\right)^{r^{\prime}}\left(m=\left\lfloor\frac{r}{r_{k}}\right\rfloor \cdot m_{k}\right)$ satisfies

$$
\frac{m \log m}{r} \leq \frac{m \log m}{r^{\prime}}<\frac{\bar{H}(\mathcal{P})}{C}+\frac{\epsilon}{3}
$$

and

$$
\bar{d}\left(\mathcal{P}, \mathcal{P}_{r^{\prime}}(\tau)\right)<\limsup _{k \rightarrow \infty} \bar{d}\left(\mathcal{P}, \mathcal{P}_{r_{k}}\left(\tau_{k}\right)\right)+\frac{\epsilon}{3}<\frac{\epsilon}{3}+\frac{\epsilon}{3} .
$$

The same τ satisfies

$$
\bar{d}\left(\mathcal{P}, \mathcal{P}_{r}(\tau)\right)<\bar{d}\left(\mathcal{P}, \mathcal{P}_{r^{\prime}}(\tau)\right)+\bar{d}\left(\mathcal{P}_{r^{\prime}}(\tau), \mathcal{P}_{r}(\tau)\right)<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3},
$$

as desired.

3.6 One automaton

The stage is set for proving Theorem 2.2.
Proof of Theorem 2.2 Let $\mathcal{P} \in \Delta \Delta(A)$ and $\epsilon>0$. Since the function $\bar{H}(\cdot)$ is continuous and the set of distributions with finite support and rational coefficients is dense in $\Delta \Delta(A)$, we may assume w.l.o.g. that \mathcal{P} is a rational distribution over rational beliefs. Let $l_{0}=l_{0}(\epsilon)$ be given by Lemma 3.16. Let $l \geq l_{0}$ be a common denominator of \mathcal{P}.

We define a De Bruijn automaton scheme for agent 1

$$
\Xi=\left\langle\mathcal{P}, l,\left\{x(k), L_{k},\left(s_{t}(k), z_{t}(k), a_{t}^{2}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle
$$

with

- $x(k)=x_{1}, \ldots, x_{m_{k}}$ an arbitrary compound De Bruijn sequence as specified by Definition 3.9,
- $\left|L_{k}\right|=\left(\left|A^{2}\right|-1\right) m_{k}$,
- $z_{t}(k)=k l-1$ for every $t \in\left[\left|L_{k}\right|\right]$,
- $\left\{\left(s_{t}(k), a_{t}^{2}(k)\right)\right\}$ an arbitrary enumeration of all pairs $\left(s, a^{2}\right)$ such that $s \in\left[m_{k}\right]$ and $a^{2} \neq x_{s}^{2}(k)$,
- G_{k} the entire symmetry group on $\left[\left|L_{k}\right|\right]$.

Since $\frac{\left|L_{k}\right|}{m_{k}}=\left|A^{2}\right|-1$, Lemma 3.16 ensures that there is $r_{0} \in \mathbb{N}$, such that for every $r \geq r_{0}$, there is $m \in \mathbb{N}$ and $\tau \in \Delta\left(\Sigma^{1}(m) \times \Sigma^{2}\right)$ such that

$$
\frac{\bar{H}(P)}{C}+\epsilon \geq \frac{m \log m}{r}
$$

and

$$
\bar{d}\left(\mathcal{P}, \mathcal{P}_{r}(\tau)\right)<\epsilon
$$

3.7 One automaton, one sequence

In this section we prove Theorem 2.4. Theorem 2.4 refers only to $\mathcal{P}_{r}^{1}(\tau)$, and so we can take any coupling $\mathcal{P} \in \Delta \Delta(A)$ such that $\mathcal{P}^{1}=\mathcal{P}_{r}^{1}(\tau)$; therefore $H(\mathcal{P})=H\left(\mathcal{P}_{1}\right)$. In particular, \mathcal{P} can be taken such that $P^{2}=\delta_{a^{2}}$, for some $a^{2} \in A^{2}$ (\mathcal{P} a.s.).

We prove Theorem 2.4 with $C\left(\mathcal{P}^{1}\right)=\frac{\left|A^{2}\right|-1}{\bar{H}(\mathcal{P})}+0.00001$, assuming w.l.o.g. that $\bar{H}(\mathcal{P})>0$. Otherwise, we can approximate \mathcal{P} by a pure periodic sequence with period $\log m$ and consider any r sufficiently large. By continuity, we assume w.l.o.g. that \mathcal{P} is finitely supported and has rational coefficient.

Given $\epsilon>0$ and a rational distribution over rational beliefs $\mathcal{P} \in \Delta \Delta(A)$ with $\mathcal{P}^{2}=\delta_{\delta_{a^{2}}}$. Let l_{0} be given by Lemma 3.16 and let $l \geq l_{0}$ be a common denominator of \mathcal{P}.

Define a De Bruijn automaton scheme for agent 1

$$
\Xi=\left\langle\mathcal{P}, l,\left\{x(k), L_{k},\left(s_{t}(k), z_{t}(k), a_{t}^{2}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle
$$

with

- $x(k)=x_{1}, \ldots, x_{m_{k}}$ an arbitrary compound De Bruijn sequence as specified by Definition 3.9,
- $\left|L_{k}\right|=\left(\left|A^{2}\right|-1\right) m_{k}$,
- $z_{t}(k)=k l-1$ for every $t \in\left[\left|L_{k}\right|\right]$,
- $\left\{\left(s_{t}(k), a_{t}^{2}(k)\right)\right\}$ an enumeration of all pairs $\left(s, a^{2}\right) \in\left[m_{k}\right] \times A^{2} \backslash\left\{a^{2}\right\}$, such $a_{t}^{2}(k)$ is $\left(\left|A^{2}\right|-1\right)$-periodic (in t),
- G_{k} is the group of all the permutations π on $\left[\left|L_{k}\right|\right]$ such that $\pi(t)=t \bmod \left|A^{2}\right|-$ 1 , for all $t \in\left[\left|L_{k}\right|\right]$.
We show is that G_{k} is large enough, so that $\sup _{k \in \mathbb{N}}\left(\frac{\left|L_{k}\right|!}{\left|G_{k}\right|}\right)^{\frac{1}{\left|L_{k}\right|}}<\infty$, and so Ξ is a De Bruijn automaton scheme. Indeed,

$$
\left|G_{k}\right|=\left(\frac{\left|L_{k}\right|}{\left|A^{2}\right|-1}!\right)^{\left|A^{2}\right|-1}
$$

and therefore,

$$
\left(\frac{\left|L_{k}\right|!}{\left|G_{k}\right|}\right)^{\frac{1}{\left|L_{k}\right|}}=\binom{\left|L_{k}\right|}{\frac{\left|L_{k}\right|}{\left|A^{2}\right|-1}, \cdots, \frac{\left|L_{k}\right|}{\left|A^{2}\right|-1}}^{\frac{1}{\left|L_{k}\right|}} \leq\left(\left|A^{2}\right|-1\right)^{\left|L_{k}\right| \frac{1}{\left|L_{k}\right|}}=\left|A^{2}\right|-1 .
$$

Let $\tau_{k} \in \Delta\left(\Sigma^{1}\left(m_{k}\right) \times A_{p}^{2}\left(r_{k}\right)\right)^{r_{k}}$ be the induced mixed strategies, i.e., the uniform distribution over $\left\{\left(\sigma_{\pi . \Xi}(k), \bar{a}_{\pi . \Xi}(k)\right): \pi \in G_{k}\right\}$ (as prescribed by Lemma 3.13).

We claim that τ_{k}^{2} is pure and that its period is in fact $k l\left(\left|A^{2}\right|-1\right)$ which divides r_{k}. The choice of the jump transition $\left\{\left(s_{t}(k), a_{t}^{2}(k)\right)\right\}$ was made such that the period of the induced play $\bar{a}_{\Xi}^{2}(k)$ is $k l\left(\left|A^{2}\right|-1\right)$ which divides r_{k} since $r_{k}=k l\left|L_{k}\right|$ and $\left|L_{k}\right|=\left(\left|A^{2}\right|-1\right) m_{k}$. The definition of G_{k} is such that $\bar{a}_{\pi . \Xi}^{2}(k)=\bar{a}_{\Xi}^{2}(k)$, for all
$\pi \in G_{k}$; therefore τ_{k}^{2} is pure. Since $m_{k}=l|Y|^{k}$, we can take $C=\frac{\left|A^{2}\right|-1}{\bar{H}\left(\mathcal{P}^{1}\right)}+0.00001$ and get $\bar{a}_{\Xi}^{2}(k) \in A_{p}^{2}\left(C \log m_{k}\right)$, for any k large enough.

Lemma 3.16 provides $r_{0} \in \mathbb{N}$ such that for any $r \geq r_{0}$ there are $m \in \mathbb{N}$ and $\tau \in \Delta\left(\Sigma^{1}(m), \Sigma^{2}\right)$ such that

$$
\frac{\bar{H}(P)}{C}+\epsilon \geq \frac{m \log m}{r}
$$

and

$$
\bar{d}\left(\mathcal{P}, \mathcal{P}_{r}(\tau)\right)<\epsilon
$$

Furthermore, τ is the concatenation independent copies of τ_{k}, for some $k \in \mathbb{N}$, and m is a multiple of m_{k}; therefore τ^{2} is pure and periodic with period $k l\left(\left|A^{2}\right|-1\right)$ which is at $\operatorname{most} C \log \left(m_{k}\right) \leq C \log (m)$, for all k large enough. For finitely many small values of k, choosing r_{0} large enough allows us to choose m so large that $k l\left(\left|A^{2}\right|-1\right) \leq C \log (m)$.

3.8 Pairs of automata

In this section we prove Theorem 2.3. Recall that it is assumed throughout that $\left|A^{1}\right|,\left|A^{2}\right| \geq 2$.

The set of beliefs $\Delta(A)$ is divided into two regions:

$$
\begin{aligned}
\Delta_{I}(A) & =\{Q \in \Delta(A): " Q \text { is supported on either one row or one column" }\}, \\
\Delta_{I I}(A) & =\Delta(A) \backslash \Delta_{I}(A) .
\end{aligned}
$$

Every $\mathcal{P} \in \Delta \Delta(A)$ can be (uniquely) represented as $\lambda \mathcal{P}_{I}+(1-\lambda) \mathcal{P}_{I I}$, where $\mathcal{P}_{I, I I} \in \Delta \Delta_{I, I I}(A)$ and $0 \leq \lambda \leq 1$. The constant $C(\mathcal{P})$ of Theorem 2.3 is defined as $\lambda C_{I}\left(\mathcal{P}_{I}\right)+(1-\lambda) C_{I I}\left(\mathcal{P}_{I I}\right)$, with $C_{I, I I}: \Delta \Delta_{I, I I}(A) \rightarrow \mathbb{R}_{+}$defined by

$$
\begin{aligned}
C_{I}(\mathcal{P}) & =\frac{\bar{H}(\mathcal{P})}{n-1}, \quad\left(\text { where } n=\min \left\{\left|A^{1}\right|,\left|A^{2}\right|\right\}\right) \\
C_{I I}(\mathcal{P}) & =\frac{\bar{H}(\mathcal{P})}{\bar{D}(\mathcal{P})}
\end{aligned}
$$

Where, $\bar{D}(\mathcal{P})=\int D(Q) \mathrm{d} \mathcal{P}(Q)$ and $D: \Delta(A) \rightarrow[0, n-1]$ is a continuous function whose zeros are exactly $\Delta_{I}(A)$. The definition of D is deferred to Sect. 3.8.2.

The following lemma allows us to consider each one of the cases $\mathcal{P} \in \Delta \Delta_{I}(A)$ and $\mathcal{P} \in \Delta \Delta_{I I}(A)$ separately.

Lemma 3.17 Let $\mathcal{P}_{1}, \mathcal{P}_{2} \in \Delta \Delta(A), C_{1}, C_{2} \geq 0$, and $0 \leq \lambda \leq 1$. Suppose that for every $\epsilon>0$ and every $l \in\{1,2\}$ there exists $r_{0} \in \mathbb{N}$ such that for every $r \geq r_{0}$ there exist $r^{\prime} \leq r, m \in \mathbb{N}$, and $\tau \in \Delta\left(\Sigma^{1}(m) \times \Sigma^{2}(m)\right)^{r^{\prime}}$ such that

$$
\begin{aligned}
& \frac{r^{\prime}}{r} \geq 1-\epsilon, \\
& \frac{m \log m}{r^{\prime}} \leq C_{l}+\epsilon,
\end{aligned}
$$

and

$$
\bar{d}\left(\mathcal{P}_{l}, \mathcal{P}_{r^{\prime}}(\tau)\right)<\epsilon
$$

Then, for every $\epsilon>0$ there exists $r_{0} \in \mathbb{N}$ such that for every $r \geq r_{0}$ there exist $r^{\prime} \leq r$, $m \in \mathbb{N}$ and $\tau \in \Delta\left(\Sigma^{1}(m) \times \Sigma^{2}(m)\right)^{r^{\prime}}$ such that

$$
\begin{aligned}
& \frac{r^{\prime}}{r} \geq 1-\epsilon, \\
& \frac{m \log m}{r^{\prime}} \leq \lambda C_{1}+(1-\lambda) C_{2}+\epsilon,
\end{aligned}
$$

and

$$
\bar{d}\left(\lambda \mathcal{P}_{1}+(1-\lambda) \mathcal{P}_{2}, \mathcal{P}_{r^{\prime}}(\tau)\right)<\epsilon
$$

Proof Let $\epsilon>0$ and $\lambda \in(0,1)$. Set $\lambda_{1}=\lambda$ and $\lambda_{2}=1-\lambda_{1}$, and $\mathcal{P}=\lambda_{1} \mathcal{P}_{1}+\lambda_{2} \mathcal{P}_{2}$. Let $r_{0}>0$ be large enough so that for every $r \geq r_{0}$ and $l \in\{1,2\}$, there are $r_{l} \leq \lambda_{l} r$, $m_{l} \in \mathbb{N}$, and $\tau_{l} \in \Delta\left(\Sigma^{1}\left(m_{l}\right) \times \Sigma^{2}\left(m_{l}\right)\right)^{r_{l}}$ such that

$$
\begin{aligned}
& \frac{r_{l}}{\lambda_{l} r} \geq 1-\epsilon, \\
& \frac{m_{l} \log m_{l}}{r_{l}} \leq C_{l}+\epsilon,
\end{aligned}
$$

and

$$
\bar{d}\left(\mathcal{P}_{l}, \mathcal{P}_{r_{l}}\left(\tau_{l}\right)\right)<\epsilon
$$

Let $r^{\prime}=r_{1}+r_{2}$ and $m=m_{1}+m_{2}$. Let τ be the concatenation of τ_{1} and τ_{2}. We have,

$$
\begin{aligned}
& \tau \in \Delta\left(\Sigma^{1}(m) \times \Sigma^{2}(m)\right)^{r^{\prime}}, \\
& \frac{r^{\prime}}{r} \geq 1-\epsilon,
\end{aligned}
$$

and

$$
\bar{d}\left(\mathcal{P}, \mathcal{P}_{r^{\prime}}(\tau)\right)<\epsilon .
$$

It remains to verify

$$
\begin{aligned}
\frac{m \log m}{r^{\prime}} & =\sum_{l=1,2} \frac{m_{l} \log m}{r^{\prime}}=\sum_{l=1,2} \frac{m_{l} \log m_{l}}{r^{\prime}}+\sum_{l=1,2} \frac{m_{l} \log \frac{m}{m_{l}}}{r^{\prime}} \\
& \leq \frac{r}{r^{\prime}} \sum_{l=1,2} \lambda_{l} \frac{m_{l} \log m_{l}}{r_{l}}+\frac{m}{r^{\prime}} \sum_{l=1,2} \frac{m_{l}}{m} \log \frac{m}{m_{l}} \\
& \leq \frac{1}{1-\epsilon}\left[\sum_{l=1,2} \lambda_{l} C_{l}+\epsilon\right]+\frac{m}{r^{\prime}} H\left(\frac{m_{1}}{m}, \frac{m_{2}}{m}\right) \\
& \leq \sum_{l=1,2} \lambda_{l} C_{l}+\frac{\epsilon}{1-\epsilon}\left(\lambda_{1} C_{1}+\lambda_{2} C_{2}+1\right)+o(1) .
\end{aligned}
$$

By Lemmas 3.6 and 3.17, it is sufficient to prove the following lemma.
Lemma 3.18 For every $\epsilon>0$ and every $\mathcal{P} \in \Delta_{I}(A) \cup \Delta \Delta_{I I}(A)$ there exist sequences $r_{k}, m_{k} \in \mathbb{N}$ and $\tau_{k} \in \Delta\left(\Sigma^{1}\left(m_{k}\right) \times \Sigma^{2}\left(m_{k}\right)\right)^{r_{k}}$ satisfying

$$
\begin{align*}
& \sup _{k \in \mathbb{N}} r_{k}=\infty, \tag{3.5}\\
& \sup _{k \in \mathbb{N}} r_{k+1} / r_{k}<\infty, \tag{3.6}\\
& \limsup _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}} \leq C(\mathcal{P})+\epsilon, \tag{3.7}\\
& \limsup _{k \rightarrow \infty} \bar{d}\left(\mathcal{P}, \mathcal{P}_{r_{k}}\left(\tau_{k}\right)\right)<\epsilon . \tag{3.8}
\end{align*}
$$

3.8.1 $C_{I}(\mathcal{P})$

In this section we prove Lemma 3.18 in the case $\mathcal{P} \in \Delta \Delta_{I}(A)$. We partition $\Delta_{I}(A)$ into finitely many regions. By virtue of Lemma 3.17, we assume w.l.o.g. that \mathcal{P} is supported in one of these regions.

There are $\left|A^{1}\right|\left|A^{2}\right|+\left|A^{1}\right|+\left|A^{2}\right|$ regions as follows: Dirac beliefs, beliefs supported on any single row, and the beliefs supported on any single column:

$$
\begin{array}{ll}
\left\{\delta_{a}\right\} & a \in A, \\
\left\{Q \in \Delta\left(\left\{a^{1}\right\} \times A^{2}\right): H(Q)>0\right\} & a^{1} \in A^{1}, \\
\left\{Q \in \Delta\left(A^{1} \times\left\{a^{2}\right\}\right): H(Q)>0\right\} & a^{2} \in A^{2} .
\end{array}
$$

The case $\mathcal{P}=\delta_{\delta_{a}}$ is simple. Let $b \in\left(A^{1} \backslash\left\{a^{1}\right\}\right) \times\left(A^{2} \backslash\left\{a^{2}\right\}\right)$. Let σ_{k}^{1} be an automaton with k states that k-periodically outputs $k-1$ consecutive a^{1} s followed by a b^{1} when it reaches state k. Let σ_{k}^{2} be an automaton that $k+1$-periodically outputs k consecutive a^{2} s followed by a b^{2} at state $k+1$. The transitions $\left(k, b^{2}\right)$ and $\left(k+1, b^{1}\right)$
are both first hit at time $k(k+1)$; therefore this pair of automata is $r_{k}=k(k+1)$ concatenable. Lemma 3.18 holds with $m_{k}=k+1$.

It remains to consider the case $\mathcal{P} \in \Delta \Delta\left(A^{1} \times\left\{a^{2}\right\}\right)$ with $\bar{H}(\mathcal{P})>0$ (the case $\mathcal{P} \in \Delta \Delta\left(\left\{a^{1}\right\} \times A^{2}\right)$ is symmetric). The construction builds on the construction in the proof of Theorem 2.4. We consider m_{k}, r_{k}, L_{k} and the automata $\sigma^{1}(k)$ and $\sigma^{2}(k)$, as given in the proof of Theorem 2.4.

We construct an $\left(r_{k}+k l\right)$-concatenable pair of automata with $m_{k}+k l$ states that generate the same sequence as $\left(\sigma^{1}(k), \sigma^{2}(k)\right)$ in the first $k l$ steps. Since $k l \ll m_{k}, r_{k}$, the conditions of Lemma 3.18 are satisfied.

Agent 1's automaton is the concatenation of $\sigma^{1}(k)$ with an oblivious automaton with $k l$ states. The oblivious automaton starts at state 1 and moves to state 2 and then 3 , and so on until it reaches state $k l$, while always outputting some fixed action $\mathbf{a}^{\mathbf{1}} \in A^{1}$. Note that L_{k} does not include a sequence where agent 1 always plays $\mathbf{a}^{\mathbf{1}}$.

The $k l\left(\left|A^{2}\right|-1\right)$-periodic oblivious automaton σ^{2} is paired with an automaton that looks for the ending sequence of $k l$ consecutive $\mathbf{a}^{\mathbf{1}}$ actions. Formally, suppose the states of $\sigma^{2},\left[k l\left(\left|A^{2}\right|-1\right)\right]$, are visited in increasing order $1,2, \ldots, k l\left(\left|A^{2}\right|-1\right)$. The states of the new automaton are $\left[k l\left(\left|A^{2}\right|-1\right)\right] \times\{0,1\}$. The transitions are of the form $\left(i, b, a^{1}\right) \mapsto\left(i+1 \bmod k l\left(\left|A^{2}\right|-1\right), x\right)$, where $x=1$ if and only if either $i=k l\left(\left|A^{2}\right|-1\right)$, or $b=1$ and $a^{1}=\mathbf{a}^{\mathbf{1}}$.

After r_{k} steps the automaton of agent 1 reaches the final transition of σ_{k}^{1} and moves to the initial state of its second automaton. At the same time agent 2's automaton is at state $(1,1)$. In the next $k l$ steps agent 1 plays $\mathbf{a}^{\mathbf{1}}$ which result in both agents reaching certain states for the first time: agent 2 -state ($k l, 1$), and agent 1 -the last state of its second automaton. Therefore, our construction is $r_{k}+k l$ concatenable.

3.8.2 $C_{I I}(\mathcal{P})$

In this section we prove Lemma 3.18 in the case $\mathcal{P} \in \Delta \Delta_{I I}(A)$. Recall that the definition of $C(\mathcal{P})=C_{I I}(\mathcal{P})$ depends on an appropriate definition of a function $D: \Delta_{I I}(A) \rightarrow(0, n-1]$. We begin by defining ${ }^{3}$ the function D.

We think of A as the complete bipartite graph with colour sets A^{1}, A^{2}. A set of action profiles $J \subset A$ is called a matching if for every $\left(a^{1}, a^{2}\right),\left(b^{1}, b^{2}\right) \in J, a^{1}=b^{1}$ if and only if $a^{2}=b^{2}$.

Definition 3.19 We define $D: \Delta(A) \rightarrow[0, n-1]$ by

$$
D(Q)=\max _{\text {matching } J}|J|(|J|-1) \min _{a \in J} Q(a) .
$$

Note that D is continuous and its range is indeed $[0, n-1]$. The maximum, $n-1$, is attained when Q is a uniform distribution on a perfect matching. ${ }^{4,5}$ The mini-

[^3]mum, 0 , is attained exactly when Q is supported on either a single row or a single column.

The construction is based on the existence of a pair of De Bruijn automaton schemes, one for each agent, such that the two schemes induce exactly the same play.

Definition 3.20 A De Bruijn bi-automata scheme is a tuple

$$
\Phi=\left\langle\mathcal{P}, l,\left\{x(k), L_{k},\left(s_{t}^{1}(k), s_{t}^{2}(k), z_{t}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle
$$

such that for each $i \in\{1,2\}$,

$$
\Phi_{i}=\left\langle\mathcal{P}, l,\left\{x(k), L_{k},\left(s_{t}^{i}(k), z_{t}(k), x_{s_{t}^{-i}(k)}^{-i}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle
$$

is a De Bruijn automaton scheme for agent i.
The definition of a De Bruijn bi-automata scheme requires that both Φ_{1} and Φ_{2} have the same L_{k} and G_{k}; therefore they induce exactly the same play $\bar{a}_{\Phi_{1}}(k)=\bar{a}_{\Phi_{2}}(k)$. This requirement is quite demanding. It says that along the play the two automata always either perform $\mathrm{a}+1$ transition together or a jump transition together. I.e., if at some stage the automata are at states s and t respectively, then either $x_{s}=x_{t}$, or $x_{s}^{1} \neq x_{t}^{1}$ and $x_{s}^{2} \neq x_{t}^{2}$. In the latter case we say that the pair (s, t) is good. Identifying large sets of good pairs of states (that satisfy some further independence property) will be crucial in our construction of a bi-automaton scheme. The pair of random automata induced by Φ are correlated by using the same $\pi \in G_{k}$ for both $\sigma_{\pi \cdot \Phi_{1}}^{1}(k)$ and $\sigma_{\pi . \Phi_{2}}^{2}(k)$.

Let $\mathcal{P} \in \Delta \Delta_{I I}(A)$. By continuity, we may assume w.l.o.g. that $\mathcal{P}=\sum_{i} q_{i} \delta_{Q_{i}}$ is finitely supported rational distribution over rational believes. Let l be an arbitrary common denominator of \mathcal{P}. By Lemma 3.16, it is sufficient for the proof of Lemma 3.18 to construct a De Bruijn bi-automata scheme

$$
\Phi=\left\langle\mathcal{P}, l,\left\{x(k), L_{k},\left(s_{t}^{1}(k), s_{t}^{2}(k), z_{t}(k)\right)_{t=1}^{\left|L_{k}\right|}, G_{k}\right\}_{k=1}^{\infty}\right\rangle
$$

with

$$
\liminf _{k \rightarrow \infty} \frac{\left|L_{k}\right|}{m_{k}} \geq \bar{D}(\mathcal{P})-\epsilon(l)
$$

where $\epsilon(l) \rightarrow 0$, as $l \rightarrow \infty$.
Denote $l_{j}=q_{j} l$, a common denominator of Q_{j}. Let $Y=\times_{j} T^{Q_{j}}\left(l_{j}\right)$, and $x(k)=$ $x_{1}, \ldots, x_{m_{k}}$ an arbitrary compound De Bruijn sequence of order k over the alphabet Y. The group G_{k} is the entire symmetry group on $\left[\left|L_{k}\right|\right]$. It remains to specify $\left|L_{k}\right|$, $s_{t}^{1}(k), s_{t}^{2}(k)$, and $z_{t}(k)$.

In what follows we sometimes suppress the index k when it causes no confusion. For a state $s \in\left[m_{k}\right]$, let $\{l t+1, \ldots, l t+l\} \ni s$ be the unique non-overlapping interval of l consecutive states containing s. We consider the chunk of x that begins $(k-1) l$ places before that interval and ends at s. That is, let $u=u(s)$ be the unique integer
such that $(k-1) l \leq u<k l$ and $s=u+1 \bmod l$. We call the chunk of the De Bruijn sequence $x_{[s-u, s-1]}:=\left(x_{s-u}, \ldots, x_{s-1}\right)$ the stem of s, denoted stem (s). We call the state $s-u$ the origin of s, denoted orig (s).

For states $s, t \in\left[m_{k}\right]$ corresponding to elements of the compound De Bruijn sequence $x_{s}=\left(a^{1}, a^{2}\right)$ and $x_{t}=\left(b^{1}, b^{2}\right)$, we say that (s, t) is a good pair of states if
(i) $\operatorname{stem}(s)=\operatorname{stem}(t)$, and
(ii) $a^{1} \neq b^{1}$ and $a^{2} \neq b^{2}$.

The played action at (s, t) is $\left(a_{1}, b_{2}\right)$ and we use the notations:

$$
\begin{aligned}
\operatorname{act}(s, t) & =\left(a^{1}, b^{2}\right) \\
\operatorname{act}^{1}(s) & =a^{1} \\
\operatorname{act}^{2}(t) & =b^{2}
\end{aligned}
$$

A set of good pairs of states X is independent if for every $(s, t),\left(s^{\prime}, t^{\prime}\right) \in X$

$$
\begin{align*}
s & =s^{\prime} \Rightarrow \operatorname{act}^{2}(t) \neq \operatorname{act}^{2}\left(t^{\prime}\right), \quad \text { and } \\
t & =t^{\prime} \Rightarrow \operatorname{act}^{1}(s) \neq \operatorname{act}^{1}\left(s^{\prime}\right) . \tag{3.9}
\end{align*}
$$

In graph theoretic terminology, X is an independent set of vertices in an auxiliary graph whose vertices are the good pairs of states and whose edges are given by (3.9).

From an independent set of good pairs of states of size $L,\left\{\left(s_{t}^{1}, s_{t}^{2}\right)\right\}_{t=1}^{L}$, we construct the remaining components of Φ by setting $\left|L_{k}\right|=L$, and $z_{t}=u\left(s_{t}^{1}\right)=u\left(s_{t}^{2}\right)$, for all $t=1, \ldots, L$. Condition (3.9) ensures that the fifth item of Definition 3.9 is satisfied.

Therefore, it remains to find an independent set of size $\geq(\bar{D}(\mathcal{P})-\epsilon(l)) m_{k}$ for every l and every k large enough, where $\epsilon(l) \rightarrow 0$, as $l \rightarrow \infty$.

With a tolerable abuse of notation define

$$
D(J, Q)=|J|(|J|-1) \min _{a \in J} Q(a),
$$

for a matching J and a distribution $Q \in \Delta(A)$. Recall that

$$
D(Q)=\max _{J} D(J, q) .
$$

Let J_{j}^{*} be a matching such that $D\left(Q_{j}\right)=D\left(J_{j}^{*}, Q_{j}\right)$.
It will be convenient to consider two partitions of the states: a coarser one and a finer one. The coarser partition is made by grouping together states with the same stem. We say the two states $s, t \in\left[m_{k}\right]$ are equivalent if they have the same stem. Namely, $s \sim t$ if $\operatorname{stem}(s)=\operatorname{stem}(t)$. The equivalence class of $s \in\left[m_{k}\right]$ is denoted $\langle s\rangle$. The finer partition is given by further considering the action x_{s}. For $a \in A$ and $J \subset A$, we define

$$
\begin{aligned}
& \langle s\rangle_{a}=\left\{t: t \sim s, x_{t}=a\right\}, \text { and } \\
& \langle s\rangle_{J}=\bigcup_{a \in J}\langle s\rangle_{a}
\end{aligned}
$$

These partitions induce conditional distributions $q(\cdot \mid s) \in \Delta(A)$ defined by

$$
q(a \mid s)=\frac{\left|\langle s\rangle_{a}\right|}{|\langle s\rangle|}
$$

Denote $L_{j}=l_{1}+\cdots+l_{j}$. Note that if $s=i \bmod l, i \in\left[L_{j}\right] \backslash\left[L_{j-1}\right]$, then $q(\cdot \mid s)$ depends only on $x_{\left[s-i+L_{j-1}+1, s-1\right]}$. Explicitly,

$$
q(a \mid s)=\frac{\left|\left\{y \in T^{Q_{j}}\left(l_{j}\right): y_{\left[1, i-L_{j-1}-1\right]}=x_{\left[s-i+L_{j-1}+1, s-1\right]}, y_{i}=a\right\}\right|}{\mid\left\{y \in T^{\left.Q_{j}\left(l_{j}\right): y_{\left[1, i-L_{j-1}-1\right]}=x_{\left[s-i+L_{j-1}+1, s-1\right]}\right\} \mid} .\right.}
$$

Explanation: the states in $\langle s\rangle$ correspond to blocks of x whose prefix is stem (s), which are exactly all the sequences in Y^{k} beginning with stem (s). Since the first $k-1$ Y-words of these sequences are determined by stem (s), we have

$$
\begin{aligned}
|\langle s\rangle| & =\left|\left\{y \in Y: y_{[1, i-1]}=x_{[s-i+1, s-1]}\right\}\right| \\
& =\left|\left\{y \in T^{Q_{j}}\left(l_{j}\right): y_{\left[1, i-L_{j-1}-1\right]}=x_{\left[s-i+L_{j-1}+1, s-1\right]}\right\}\right| \times \mid \times_{j^{\prime}>j} T^{Q_{j^{\prime}}\left(l_{j^{\prime}}\right) \mid,}
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\left|\langle s\rangle_{a}\right| & =\left|\left\{y \in Y: y_{[1, i-1]}=x_{[s-i+1, s-1]}, \quad y_{i}=a\right\}\right| \\
& =\mid\left\{y \in T^{Q_{j}}\left(l_{j}\right): y_{\left[1, i-L_{j-1}-1\right]}\right. \\
& \left.=x_{\left[s-i+L_{j-1}+1, s-1\right]}, \quad y_{i}=a\right\}|\times| \times_{j^{\prime}>j} T^{Q_{j^{\prime}}\left(l_{j^{\prime}}\right) \mid .}
\end{aligned}
$$

For a state $s \in\left[m_{k}\right]$, let $q(s)=q(\cdot \mid s)$ and let $j(s)$ be the index such that $s \in$ $\left[L_{j(s)}\right] \backslash\left[L_{j(s)-1}\right] \bmod l$. When s is drawn uniformly at random from $\left[m_{k}\right], q=q(s)$ and $j=j(s)$ become random variables (functions of $s)$. We denote $q_{l}=p(q \mid j)$, emphasizing the dependence of the distribution of (q, j) on l (and not on k or the choice of x).

Note that q_{l} is the expected distribution of beliefs of a uniform random sample from Y. Lemma 3.15 implies that $q_{l} \rightarrow \mathcal{P}$ in (as $l \rightarrow \infty$). Here, Lemma 3.15 is applied with $r=l, \bar{a} \sim \operatorname{Unifom}(Y)$, and $\bar{b}=b_{1}, \ldots, b_{r}$ being the fixed sequence where b_{t} is the index j such that $t \in\left[L_{j}\right] \backslash\left[L_{j-1}\right]$. Since $\lim _{l \rightarrow \infty} \frac{\log \left|T^{Q_{j}}\left(l_{j}\right)\right|}{l_{j}}=H\left(Q_{j}\right)$, for all j, we have $H(\bar{a} \mid \bar{b})=H(\bar{a}) \rightarrow \bar{H}(\mathcal{P})$, as $l \rightarrow \infty$.

Let $J^{*}=J^{*}(s):=J_{j(s)}^{*}$. Since, for any J, the function $D(J, \cdot)$ is continuous on the compact domain $\Delta(A)$, the proof will be concluded if we construct an independent set of size

$$
m_{k} \mathbb{E}\left[D\left(J^{*}, q\right)\right] .
$$

We turn now to construct an independent set of size $m_{k} \mathbb{E}\left[D\left(J^{*}, q\right)\right]$. For $s \in\left[m_{k}\right]$, let $d(s)=\min _{a \in J^{*}(s)}\left|\langle s\rangle_{a}\right|$. It suffices to find $d(s)\left|J^{*}(s)\right|\left(\left|J^{*}(s)\right|-1\right)$ independent good pairs of states from $\langle s\rangle_{J^{*}}$, since by doing so we obtain an independent set of pairs $I_{\langle s\rangle} \subset\langle s\rangle \times\langle s\rangle$ of size $|\langle s\rangle| D\left(J^{*}(s), q(s)\right)$. Summing over all the equivalence classes $\left\{\langle s\rangle: s \in\left[m_{k}\right]\right\}$ gives an independent set of the desired size,

$$
\left|\bigcup_{\langle s\rangle: s \in\left[m_{k}\right]} I_{\langle s\rangle}\right|=\sum_{s \in\left[m_{k}\right]} \frac{\left|I_{\langle s\rangle}\right|}{|\langle s\rangle|}=\sum_{s \in\left[m_{k}\right]} D\left(J^{*}(s), q(s)\right)=m_{k} \mathbb{E}\left[D\left(J^{*}, q\right)\right] .
$$

Fix $s \in\left[m_{k}\right]$. For every $a \in J^{*}(s)$, let $S_{a} \subset\langle s\rangle_{a},\left|S_{a}\right|=d(s)$. For every ordered pair $(a, b) \in J^{*}(s) \times J^{*}(s), a \neq b$, let $\varphi_{a, b}: S_{a} \rightarrow S_{b}$ be a bijection. The following set is an independent set of good pairs all coming from $\langle s\rangle_{J^{*}(s)}$ whose size is $d\left|J^{*}(s)\right|\left(\left|J^{*}(s)\right|-1\right)$:

$$
\bigcup_{(a, b) \in J^{*}(s) \times J^{*}(s), a \neq b}\left\{\left(t, \varphi_{a, b}(t)\right): t \in S_{a}\right\} .
$$

3.8.3 Improving $C_{I I}$

We suggest an improvement of $C_{I I}$, by replacing the function D by its concavification cav D. Our proof that shows that $D(Q)$ is achievable could be slightly modified in order to show that $($ cav $D)(Q)$ is achievable. For the sake of simplicity and clarity of the proof, we chose to prove the slightly weaker statement, while only sketching the proof of the stronger statement.

The quantity (cav $D)(Q)$ is the solution of the following linear programme:

$$
\begin{array}{cl}
\max \sum_{\substack{\text { matching } J}} x_{J}|J|(|J|-1) & \text { subject to } \\
\sum_{\substack{\text { matching } J: \\
a \in J}} x_{J} \leq Q(a) & \text { for every } a \in A, \\
x_{J} \geq 0 & \text { for every matching } J .
\end{array}
$$

As before, the idea is to find an independent set of good pairs of states of size $m_{k} \mathbb{E}[(\operatorname{cav} D)(q(s))]-o\left(m_{k}\right)$. Take a random state $s \in\left[m_{k}\right]$. Associate with s a bipartite multi-graph M_{s} whose colour sets are A^{1} and A^{2}, and the multi-edges between each $a^{1} \in A^{1}$ and $a^{2} \in A^{2}$ correspond to $\langle s\rangle_{\left(a^{1}, a^{2}\right)}$. Let $\left\{x_{J}\right\}$ be an optimal solution for the linear programme (cav $D)(q(s))$. Let $d_{J}=\left\lfloor x_{J}|\langle s\rangle|\right\rfloor$, for every matching J. Note that $d_{J} /|\langle s\rangle|$ is a feasible solution for the linear programme, and it is nearly optimal, if $|\langle s\rangle|$ is large. The multi-graph M_{s} contains d_{J} copies of each matching J. For every copy of J, take the ordered pairs of states that correspond to any ordered pair of multi-edges in J. Do the same for every J. The union of these collections of pairs of states is an independent set of good pairs of states of size $d_{*}(s)=\sum_{J} d_{J}|J|(|J|-1)$, with

$$
\frac{d_{*}(s)}{\langle s\rangle(\operatorname{cav} D)(q(s))} \rightarrow 1, \quad \text { as }|\langle s\rangle| \rightarrow \infty
$$

Remark 3.21 Since cav $D(Q)$ is a linear programme, it could be interesting to find a meaningful interpretation to the dual program, which could possibly lead to tightness results.

4 Values of repeated games

We present a few implications of our main results on the min-max values of repeated games played by finite automata.

We consider a class of three-player repeated games, parameterized by a one-shot strategic-form game, automaton size constraints, and game duration.

Formally, $G=\left(A=A^{1} \times A^{2} \times A^{3}, g: A \rightarrow \mathbb{R}\right)$ is a three-player game, where g is the payoff to Player 3. The payoff function extends to $g: \Delta(A) \rightarrow \mathbb{R}$ linearly. Given such a game, we define different min-max values depending on whether the team of players 1 and 2 are restricted to pure strategies, or can randomize independently, or play correlated strategies. The correlated min-max is defined as

$$
\text { cor min } \max G=\min _{\tau^{1,2} \in \Delta\left(A^{1} \times A^{2}\right)} \max _{\tau^{3} \in \Delta\left(A^{3}\right)} g\left(\tau^{1,2} \otimes \tau^{3}\right)
$$

The pure min-max and max-min are defined as

$$
\begin{aligned}
& \text { pure min max } G=\min _{a^{1} \in A^{1}, a^{2} \in A^{2}} \max _{a^{3} \in A^{3}} g\left(a^{1}, a^{2}, a^{3}\right) \\
& \text { pure } \max \min G=\max _{a^{3} \in A^{3}}^{\min _{a^{1} \in A^{1}, a^{2} \in A^{2}} g\left(a^{1}, a^{2}, a^{3}\right)}
\end{aligned}
$$

The r-stage repeated version of G is denoted $G_{r}\left(m_{1}, m_{2}, m_{3}\right)$, where each player i is restricted to strategies of automaton size m_{i}, and the payoff is the average per-stage payoff (or the limiting average, if $r=\infty$). We allow for at most one of the parameters to be infinite. In this case, either all player's strategy sets are finite, or r is finite, which guarantees that the game has a finite strategic form.

Since $G_{r}\left(m_{1}, m_{2}, m_{3}\right)$ is a finite game in strategic form, the three values, cor min max, pure min max and pure max min are well defined. For example

$$
\begin{aligned}
& \text { cor } \min \max G_{r}\left(m_{1}, m_{2}, m_{3}\right) \\
& \quad=\min _{\tau^{1,2} \in \Delta\left(\Sigma^{1}\left(m_{1}\right) \times \Sigma^{2}\left(m_{2}\right)\right)} \max _{\tau^{3} \in \Delta\left(\Sigma^{3}\left(m_{3}\right)\right)} \mathbb{E}_{\tau^{1,2,3}} \frac{1}{r} \sum_{t=1}^{r} g\left(a_{t}^{1}, a_{t}^{2}, a_{t}^{3}\right)
\end{aligned}
$$

We study asymptotic properties of the min-max values of $G_{r}\left(m_{1}, m_{2}, m_{3}\right)$ and compare them to the min-max values of G.

In what follows $\left\{m_{k}\right\},\left\{n_{k}\right\}$, and $\left\{r_{k}\right\}$ are sequences of natural numbers. If Players 1 and 2 could implement a random play of r_{k} independent Q-distributed actions, then they could guarantee, in the r_{k}-stage repeated game, the value that Q guarantees in the
one-shot game. Since implementing an i.i.d. play is not always possible under automaton size constraints, we need a notion of approximation to i.i.d. play that guarantees similar strategic power.

Definition 4.1 For $Q \in\left(A_{1} \times A_{2}\right)$, an approximation of r_{k} independent Q-distributed random actions (approximate i.i.d.play, for short) is a sequence of distributions $P_{k} \in$ $\Delta\left(\left(A^{1} \times A^{2}\right)^{r_{k}}\right)$ such that the expected empirical frequency of beliefs of P_{k} converges to δ_{Q} w.r.t. the \bar{d} distance (as $k \rightarrow \infty$).

Theorems 2.2, 2.3, and 2.4 provide conditions under which Players 1 and 2 can implement such approximate i.i.d. plays. These conditions translate to three Propositions regarding the correlated min-max value.

Theorem 2.2 provides an implementation of an approximate i.i.d. play in situations where Player 1 is restricted and Player 2 is fully rational.

Proposition 4.2 If $\lim _{k \rightarrow \infty} r_{k}=\infty$ and

$$
\liminf _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}} \geq \frac{\log \left(\left|A^{1} \times A^{2}\right|\right)}{\left(\left|A^{2}\right|-1\right)}
$$

then

$$
\lim _{k \rightarrow \infty} \text { cor } \min \max G_{r_{k}}\left(m_{k}, \infty, \infty\right)=\text { cor } \min \max G .
$$

When both players, 1 and 2, are restricted, Theorem 2.3 provides a similar result, only that in this case the ratio between r_{k} and $m_{k} \log m_{k}$ depends on the one-shot payoff function.

Proposition 4.3 There exists a constant $C>0$, that depends on G, such that if $\lim _{k \rightarrow \infty} r_{k}=\infty$ and

$$
\liminf _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}} \geq C
$$

then

$$
\lim _{k \rightarrow \infty} \text { cor } \min \max G_{r_{k}}\left(m_{k}, m_{k}, \infty\right)=\text { cor } \min \max G
$$

When the actions of Player 2 do not influence the payoff, the correlated min-max of the one-shot game is equal to the (uncorrelated) min-max. By Theorem 2.4, the situation is asymptotically the same w.r.t. the repeated version. Furthermore, Player 2's automaton can be very simple: pure, oblivious, and with just $\mathcal{O}(\log m)$ states.

Proposition 4.4 If the payoff function g does not depend on Player 2's actions, then there is $C>0$ such that if $\lim _{k \rightarrow \infty} r_{k}=\infty$ and

$$
\liminf _{k \rightarrow \infty} \frac{m_{k} \log m_{k}}{r_{k}} \geq \frac{\log \left|A^{1}\right|}{\left|A^{2}\right|-1}
$$

then ${ }^{6}$

$$
\lim _{k \rightarrow \infty} \min _{\substack{\left.\tau^{1} \in \Delta\left(\Sigma^{1}\left(m_{k}\right)\right) \\ \sigma^{2} \in A_{p}^{2}\left(\Gamma C \log \left(m_{k}\right)\right\rceil\right)}} \max _{\sigma^{3} \in \Sigma^{3}} g\left(\tau^{1}, \sigma^{2}, \sigma^{3}\right)=\text { cor } \min \max G .
$$

Proofs of Propositions 4.2, 4.3, and 4.4 Let $Q \in \Delta\left(A^{1} \times A^{2}\right)$ be a correlated minmax strategy for players 1 and 2 in the game G. By Theorem 2.3, there exist a constant $C=C(Q)$ and correlated strategies $\tau_{k} \in \Delta\left(\Sigma^{1}\left(m_{k}\right) \times \Sigma^{2}\left(m_{k}\right)\right)$ whose induced play of length $C m_{k} \log m_{k}$ approximates a sequence of independent Q-distributed random variables. This proves Proposition 4.3. Similarly, resorting to Theorems 2.2 and 2.4 proves Propositions 4.2 and 4.4 respectively.

Conversely to Propositions 4.2, 4.3, and 4.4, Player 3 has a pure strategy that guarantees the pure one-shot-game min-max value when the duration of the game is much more than $m \log m$.

Proposition 4.5 If $\frac{m_{k} \log m_{k}}{r_{k}} \rightarrow 0$, as $k \rightarrow \infty$, then

$$
\lim _{k \rightarrow \infty} \text { pure } \max \min G_{r_{k}}\left(m_{k}, m_{k}, \infty\right)=\text { pure } \min \max G .
$$

Proof By Lemma 3.1, $\log \left|\Sigma^{1}\left(m_{k}\right) \times \Sigma^{2}\left(m_{k}\right)\right|=\mathcal{O}\left(m_{k} \log m_{k}\right)$; Theorem 1 from Neyman and Okada (2009) implies that if one player is restricted to strategies in a set whose size is sub-exponential in the duration of the game and the other player is unrestricted, then the other player can asymptotically guarantee the pure-min-max value using pure strategies.

We turn now to settings in which Player 3's automaton size is bounded and the duration of the game r_{k} is not necessarily finite.
Proposition 4.6 If $\frac{\log n_{k}}{m_{k} \log m_{k}} \rightarrow 0$, as $k \rightarrow \infty$, then

$$
\lim _{k \rightarrow \infty} \text { cor } \min \max G_{r_{k}}\left(m_{k}, m_{k}, n_{k}\right)=\text { cor } \min \max G .
$$

Proof Let $Q \in \Delta\left(A^{1} \times A^{2}\right)$ be an optimal correlated strategy for Players 1 and 2 in G. By Lemmata 3.6 and 3.18, there exists $C(Q)>0$ and $r_{k}^{\prime} \sim C(Q) m_{k} \log m_{k}$, such that Players 1 and 2 can implement an approximation of a r_{k}^{\prime}-periodic sequence of independent Q-distributed random actions. We assume w.l.o.g. that the induced play is stationary, because it can be made stationary by taking the average of r_{k}^{\prime} shifts of the play; therefore any window of T consecutive actions, $T \leq r_{k}^{\prime}$, an approximation of independent Q-distributed random actions.

Divide the duration of the game r_{k} into time intervals of length r_{k}^{\prime} with a possible remainder in the beginning. Namely, intervals $\left[t_{n+1}\right] \backslash\left[t_{n}\right]$, where $t_{0}=0, t_{1}=r_{k}-$ $\left.r_{k}^{\prime} \left\lvert\, \frac{r_{k}}{r_{k}^{\prime}}\right.\right\rfloor$ (or 0 if $\left.r_{k}=\infty\right)$, and $t_{n}=t_{1}+(n-1) r_{k}^{\prime}$. Let σ^{3} be a pure strategy for player 3

[^4](possibly, a best response). For any $n=0,1, \ldots$ let $\sigma_{t_{n}}^{3}$ be Player's 3 strategy induced on the game starting at time t_{n}. The random variable $\sigma_{t_{n}}^{3}(n>0)$ assumes values in a set of size n_{k} depending on the state of Player 3's automaton at time t_{n}, and $\sigma_{t_{0}}^{3}=\sigma^{3}$ is a fixed strategy. By (Peretz 2012, Corollary 4.3) (also, Neyman 2008, pp. 9, 15-16)), the expected average per-stage payoff between time t_{n} and time $t_{n+1}-1$ is asymptotically at most the correlated min-max value of G, as k goes to infinity. Since this is true for any n, the expectation of the payoff is asymptotically at most the correlated min-max value of G.

Conversely to Proposition 4.6, if $m_{k} \log m_{k}$ is not large enough compared to $\log n_{k}$ then Player 3 can beat players 1 and 2 .
Proposition 4.7 For every $C>\left|A^{3}\right|\left(\left|A^{1}\right|+\left|A^{2}\right|\right)-2$, if $\log n_{k} \geq C m_{k} \log m_{k}$ and $r_{k} \geq n_{k} \rightarrow \infty$, as $k \rightarrow \infty$, then

$$
\lim _{k \rightarrow \infty} \text { cor } \min \max G_{r_{k}}\left(m_{k}, m_{k}, n_{k}\right)=\text { pure } \min \max G
$$

Proposition 4.7 strengthens Proposition 4.5 in that Player 3 needs only be exponentially smarter than Players 1 and 2 and the duration of the game is allowed to be proportional to $m_{k} \log m_{k}$. Nevertheless, Proposition 4.5 is stronger in that Player 3 can do with a pure strategy. Conversely, Players 1 and 2 have a winning pure strategy when they are much smarter than Player 3, as shown in Proposition 4.8 below.

Propositions 4.3 and 4.5 together show that around a duration proportional to $m \log m$ a phase transition occurs. The correlated min-max value of the repeated game changes from the correlated to the pure min-max values of the one-shot game.

Proof of Proposition 4.7 The proof is similar to the proof of (Neyman 1997, Theorem 3). Let $\gamma: A^{1} \times A^{2} \rightarrow A^{3}$ be a best-response function. That is, $g\left(a^{1}, a^{2}, \gamma\left(a^{1}, a^{2}\right)\right)=\max _{a^{3} \in A^{3}} g\left(a^{1}, a^{2}, a^{3}\right)$, for every $a^{1} \in A^{1}, a^{2} \in A^{2}$. The definition of γ extends to strategies in the repeated game recursively by

$$
\begin{gathered}
\gamma: \Sigma^{1} \times \Sigma^{2} \rightarrow\left(A^{3}\right)^{\mathbb{N}} \\
\gamma_{t}\left(\sigma^{1}, \sigma^{2}\right)=\gamma\left(\sigma^{1,2}\left(\gamma_{l}\left(\sigma^{1}, \sigma^{2}\right)_{l=0}^{t-1}\right)\right),
\end{gathered}
$$

where $\sigma^{1,2}$ is the reduced strategy of the team of players 1 and 2 induced by σ^{1} and σ^{2}. Let $X(m)=\left\{\gamma\left(\sigma^{1}, \sigma^{2}\right): \sigma^{1} \in \Sigma^{1}(m), \sigma^{2} \in \Sigma^{2}(m)\right\}$. Since every pair of automata $\left(\sigma^{1}, \sigma^{2}\right) \in \Sigma^{1}(m) \times \Sigma^{2}(m)$ can be regarded as a single automaton with m^{2} states, every $x \in X(m)$ can be implemented through an oblivious automaton with m^{2} states.

We next construct an automaton for Player 3 with $m^{3}|X(m)|$ states. By Lemma 3.1, $\log \left(m^{3}|X(m)|\right) \leq\left(\left|A^{3}\right|\left(\left|A^{1}\right|+\left|A^{2}\right|\right)-2\right) m \log m+o(m \log m)$. The strategy of Player 3 is the following strategy:
(i) Choose $x \in X(m)$ uniformly at random. Play x as long as it best responds to the actions of players 1 and 2.
(ii) Repeat Step (i) $m|X(m)|$ times or until the end of the game.
(iii) Continue arbitrarily.

The implementation of x in Step (i) requires m^{2} states, and so implementing $m|X(m)|$ repetitions of Step (i) requires $m^{3}|X(m)|$ states, as promised.

The probability of "guessing" the best response in each iteration of Step (i) is at least $|X(m)|^{-1}$, therefore the probability getting to Step (iii) is at most $\left(1-|X(m)|^{-1}\right)^{m|X(m)|} \rightarrow 0$, as $m \rightarrow \infty$.

It remains to verify the expected payoff. In each iteration of Step (i) there is at most one non-best-response stage. Since the duration of the game is much longer than the number of iterations, and the probability of getting to Step (iii) is negligible, the expected payoff is guaranteed to be asymptotically at least the pure min-max of the one-shot game.

If players 1 and 2 are much "smarter" than Player 3, they can implement a fixed play that looks like a sequence of optimal correlated mixed actions in the eyes of Player 3.

Proposition 4.8 If $\frac{n_{k}}{m_{k}} \rightarrow 0$, as $k \rightarrow \infty$, then

$$
\lim _{k \rightarrow \infty} \text { pure } \min \max G_{r_{k}}\left(m_{k}, m_{k}, n_{k}\right)=\text { cor } \min \max G,
$$

for any $r_{k} \geq m_{k} \log m_{k}$.
Proof Let $Q \in \Delta\left(A^{1} \times A^{2}\right)$ be an optimal correlated strategy for Players 1 and 2 in G. By Lemmas 3.6 and 3.18, there are $C(Q)>0, r_{k}^{\prime} \sim C(Q) m_{k} \log m_{k}$, and $\tau_{k} \in \Delta\left(\Sigma^{1}\left(m_{k}\right) \times \Sigma^{2}\left(m_{k}\right)\right)^{r_{k}^{\prime}}$ such that $\mathcal{P}_{r_{k}^{\prime}}\left(\tau_{k}\right)$ converges to δ_{Q} (as $\left.k \rightarrow \infty\right)$ w.r.t. the \bar{d} metric. We assume w.l.o.g. that r_{k} is a multiple of r_{k}^{\prime} (otherwise we prove the Proposition with a $n_{k} \ll m_{k}^{\prime} \ll m_{k}$, such that dividing r_{k} by r_{k}^{\prime} leaves a negligible reminder).

Let $\beta: \operatorname{support}\left(\tau_{k}\right) \rightarrow \Sigma^{3}\left(n_{k}\right)$ be any function. It suffices to show that for any such β (possibly a best-reply for Player 3) there is at least one $a \in \operatorname{support}\left(\tau_{k}\right)$ such that $g_{r_{k}}(a, \beta(a)) \leq$ cor min max $G+o(1)$. We show a stronger statement

$$
\begin{equation*}
\mathbb{E} g_{r_{k}}(\sigma, \beta(\sigma)) \leq \text { cor min max } G+o(1) \tag{4.1}
\end{equation*}
$$

where σ is a random strategy that distributes according to τ_{k}. We may assume that $r_{k}=r_{k}^{\prime}$, since otherwise we can divide $\left[r_{k}\right]$ into intervals of length r_{k}^{\prime} and prove the statement in each one of these intervals.

Inequality (4.1) follows from (Peretz 2012, Corollary 4.3), since $H(\beta(\sigma)) \leq$ $\log \left(\left|\Sigma^{3}\left(n_{k}\right)\right|\right)=o\left(r_{k}^{\prime}\right)$.

Acknowledgments We are grateful to three anonymous referees and an editor who contributed valuable suggestions that significantly improved the quality of this paper.

References

Abreu D, Rubinstein A (1988) The structure of nash equilibrium in repeated games with finite automata. Econometrica 56(6):1259-1281

Aumann RJ (1981) Survey of repeated games. Essays in game theory and mathematical economics in honor of Oskar Morgenstern. Bibliographisches Institut, Mannheim, pp 11-42
Bavly G, Neyman A (2014) Online concealed correlation and bounded rationality. Games Econ Behav 88:71-89
Ben-Porath E (1993) Repeated games with finite automata. J Econ Theory 59(1):17-32
Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley, New York
De Bruijn NG (1946) A combinatorial problem. K Ned Akad Wet 49:758-764
Gossner O, Hernández P (2003) On the complexity of coordination. Math Oper Res 28(1):127-140
Gossner O, Hernández P (2006) Coordination through De Bruijn sequences. Oper Res Lett 34(1):17-21
Gossner O, Tomala T (2006) Empirical distributions of beliefs under imperfect observation. Math Oper Res 31(1):13-30
Gossner O, Tomala T (2007) Secret correlation in repeated games with imperfect monitoring. Math Oper Res 32(2):413-424
Gossner O, Hernandez P, Neyman A (2006) Optimal use of communication resources. Econometrica 74(6):1603-1636
Kalai E (1990) Bounded rationality and strategic complexity in repeated games. In: Ichiishi T, Neyman A, Tauman Y (eds) Game theory and applications. Economic theory, econometrics, and mathematical economics. Academic Press, San Diego, pp 131-157
Kalai E, Stanford W (1988) Finite rationality and interpersonal complexity in repeated games. Econometrica 56(2):397-410
Lehrer E (1988) Repeated games with stationary bounded recall strategies. J Econ Theory 46(1):130-144
Neyman A (1985) Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma. Econ Lett 19(3):227-229
Neyman A (1997) Cooperation, repetition, and automata. Cooperation: game theoretic approaches. NATO ASI series F. Springer, New York, pp 233-255
Neyman A (1998) Finitely repeated games with finite automata. Math Oper Res 23(3):513-552
Neyman A (2008) Learning effectiveness and memory size. In: Discussion paper 476, Center for the Study of Rationality, Hebrew University, Jerusalem
Neyman A, Okada D (1999) Strategic entropy and complexity in repeated games. Games Econ Behav 29(1-2):191-223
Neyman A, Okada D (2000) Repeated games with bounded entropy. Games Econ Behav 30(2):228-247
Neyman A, Okada D (2009) Growth of strategy sets, entropy, and nonstationary bounded recall. Games Econ Behav 66(1):404-425
Neyman A, Spencer J (2010) Complexity and effective prediction. Games Econ Behav 69(1):165-168
Ornstein D (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4(3):337-352
Peretz R (2012) The strategic value of recall. Games Econ Behav 74(1):332-351
Peretz R (2013) Correlation through bounded recall strategies. Int J Game Theory 42(4):867-890
Shapira A (2007) Symmetric online matching pennies. PhD thesis, Hebrew University, Jerusalem

[^0]: O. Gossner acknowledges financial support from Investissements d'Avenir (ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047). P. Hernández acknowledges financial support from the Spanish Economy and Competitiveness Ministry (ECO2013-46550-R) and Generalitat Valenciana (PROMETEOII/2014/ 054).

 Ron Peretz
 ronprtz@gmail.com; ron.peretz@biu.ac.il
 1 École Polytechnique, CNRS, Paris, France
 2 London School of Economics, London, UK
 3 University of Valencia, Valencia, Spain
 4 Bar Ilan University, Ramat Gan, Israel

[^1]: ${ }^{1}$ Or, equivalently, in the space of oblivious automata of size at most $\mathcal{O}(\log m)$, i.e. those that ignore the actions of the other agent.

[^2]: ${ }^{2}$ Here and throughout, $s \bmod m$ is defined as the number in $[m]$ which is equal to s modulo m.

[^3]: ${ }^{3}$ The function D is not the largest possible. Its concavification $\operatorname{cav} D$ is also possible as discussed in Sect. 3.8.3.
 ${ }^{4}$ A perfect matching is a matching of size n.
 ${ }^{5}$ Section 3.8.3 suggests that D can be replaced by cav D which implies that $n-1$ can be attained whenever the two marginals of Q, Q^{1} and Q^{2}, are uniform distributions supported on sets of size n.

[^4]: ${ }^{6}$ Note that cor min max $G=\min _{x^{1} \in \Delta\left(A^{1}\right)} \max _{a^{3} \in A^{3}} g\left(x^{1}, \cdot, a^{3}\right)$.

