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Game Theory

Lecture notes. Solution concepts for Normal Form games: minmax, correlated
equilibrium, rationalisable strategies

Through the M1, you have learned about the Nash equilibrium concept in normal form games.
According to this concept, all players randomise independently over their own sets of actions in
such a way that each player best-responds to other player’s strategies. In this chapter, we study
three alternative concepts of importance for normal form games.

Our first concept pertains to games between two players where the gain of one is the loss of
the other, called zero-sum games. In such a game, the objectives of both players are purely
antagonistic. We define the maxmin of the game as the maximum payoff that player 1 can
guarantee, and compare it with the minmax which is the minimal payoff that player II can
defend. The celebrated minmax theorem tells us that in finite zero-sum games with mixed
strategies, the two are equal.

The second concept is correlated equilibrium. In a correlated equilibrium, all players receive
information that is not pertinent to the payoffs in the game. Yet, this information may be relevant
to how players act in the game. This is the case because all player’s informations are correlated.
Player i’s information is telling about other player’s informations, hence about their choices, so
that it finally influences i’s actions. The concept of correlated equilbrium distribution captures
this idea, and extends the Nash equilibrium notion.

Finally we study notion of rationalisable strategies. A strategy for player i is rationalisable when
it is a best-response for player i over a conjecture of other player’s strategies. Since we will im-



1. ZERO-SUM GAMES

pose that player i conjectures that other players are themselves playing rationalisable strategies,
the definition is somehow circular. We will show how to get out of this circularity, how the
concept is related to iterated deletion of dominated strategies, and to common knowledge of
rationality.

1 Zero-sum games

A zero-sum game is a game between two players: 1 and 2. Player i has a finite action Ai, i’s set
of mixed strategies is Si = ∆(Ai). The payoff function of the game is g : A1 ×A2 → R, where
g(a1,a2) is interpreted as a gain for player 1 and a loss to player 2. Since the gain of one player
is the loss of the other one, the sum of gains is always zero, and the game is called zero-sum.

The question we study are the following:

• Say that player 1 can guarantee a payoff of x when player 1 has a strategy that ensures his
payoff is at least x, no matter what player 1 chooses. How much can player 1 guarantee
in a zero-sum game?

• Say that player 1 can defend a payoff of x when, no matter what player 2 plays, player 1
has a strategy that gives him at least x against this particular strategy of 2. How much can
player 2 defend in a zero-sum game?

• Can player 1 defend more than he can guarantee? Less? The same?

1.1 Penalty shootouts

This subsection is devoted to the study of an example, penalty shootouts. A good reference on
Game Theory applied to penalty shootouts, together with an empirical analysis, is Chiappori,
Levitt, and Groseclose (2002).

Example 1.1 (Penalty shootouts). In the game of penalty shootouts, player 1 kicks the ball, and
player 2 tries to stop it.

As a simplification, we allow only two strategies for player 1, shooting left (L) or right (L).
Since player 1’s natural foot is her right foot, she misses the goal more often if she shoots right
than if the shoots left, let αL be the probability that she sends the ball to the goal while shooting
left, and αR < αL is the probability that the shoots at the goal while aiming right.

The goalee also has two strategies, as he decides where to try to stop the ball, left (l) or right
(r). If she jumps on the side where the ball is shot, she catches it and the penalty is stopped. So,
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player 1 wins whenever he shoots properly at the goal and player 2 doesn’t jump on the correct
side. Otherwise, player 2 wins.

What will the shooter and goalee do?

Questions:

1. Will the shooter aim more often to the left (easier) or to the right?

2. Will the goalee try to stop the ball more often by jumping to the left or to the right?

We write the game as a zero-sum game between players 1 and 2. The payoff matrix to player
1, taking into account the probability of shooting properly, is shown in figure 1. The payoff to
player 2 is not shown, it is the opposite of the payoff to player 1.

l r
L 0 αL
R αR 0

Figure 1: Payoff matrix in the penalty shootout game

1.1.1 How much can player 1 guarantee?

In this part, we consider that player 1 chooses a strategy, i.e., a probability p of shooting right
(and 1− p of shooting left). Then player 2, plays a best-response to player 1. For instance, we
can assume that player 1 has a long record of shooting, and that player 2’s coach has studied
all past shoutouts of player 1. In this scenario, what is the best probability p that player 1 can
choose and what is the corresponding payoff? We represent the situation by drawing, for each
probability p of player 1, player 1’s payoff if player 2 chooses l or r. Given p, player 1 receives
the minimum of the two, since player 2 can choose the action that minimses 1’s payoff. This
leads to a concave function of p. Finally, 1 chooses the value of p that maximises this minimum
of the two payoffs. In our case, this is achieved at the value p∗ = αL

αL+αR
. And the maximum

that player 1 can guarantee is v = αLαR
αL+αR

, where the maxmin v is defined as

v = max
p

min
q

g(p,q),

where g(p,q) is player 1’s payoff when mixed strategies p,q are used. See figure 2 for a graph-
ical analysis.
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Figure 2: Computation of the maxmin in the game of penalty shootouts.

1.1.2 How much can player 1 defend?

Now we go the opposite direction. We assume that player 2 chooses a strategy represented by
a probability q of jumping right (and 1− q on the left). Based on the knowledge of player 2’s
strategy, player 1 can choose whether to shoot left or right. In order to find the best possible
strategy for player 2, we represent, for each value of q, player 1’s payoff if 1 choose L, and R.
For any value of q, player 1 chooses the maximum between the two, so that we consider the
maximum of the two graphs, which corresponds to a convex function, see figure 3. Player 2’s
objective is to minimise this convex function, and this is done at the value q∗ = αR

αL+αR
. The

corresponding maximum value that player 1 can defend is v = αLαR
αL+αR

. It is called the minmax
and is defined as:

v = min
q

max
p

g(p,q)

1.1.3 Comments

We remark that, in the example v = v. This is not a coincidence, but a consequence of the
minmax theorem that we will see below.

We also remark that p∗ > 1/2, this means that the shooter kicks more often on his weak side
than on his strong side. This comes from the fact that, if it were the opposite, the goalee would
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Figure 3: Computation of the minmax in the game of penalty shootouts.

try to stop the ball always on the right side, and hence, the shooter would have incentives to
augment the probability with with he shoots on the left side.

Similarly, q∗ < 1/2, which means that the goalee tries to stop the ball more often on the strong
side of the kicker than on his weak side. If she did try to stop the ball more often on his weak
side, the goalee would want to shoot always on the right, and the goalee would have incentives
to increase the probability with with she tries to stop the ball on the right side.

1.2 The minmax theorem

Consider a zero-sum game (A1,A2,g) between player 1 and 2, where A1,A2 are finite. We let
the spaces of mixed strategies be Si = ∆(Ai), and extend the payoff function g to S1 × S2 by
letting:

g(s1,s2) = ∑
a1,a2

s1(a1)s2(a2)g(a1,a2) = Es1,s2g(a1,a2)

Theorem 1.2 (minmax theorem). For any zero-sum game G with finite action spaces:

1.
sup

s1∈S1

inf
s2∈S2

g(s1,s2) = inf
s2∈S2

sup
s1∈S1

g(s1,s2)

and their common value is called the value of the game, v(G).
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2. there exist optimal strategies s∗1,s
∗
2 such that:

inf
s2∈S2

g(s∗1,s2) = sup
s1∈S1

g(s1,s∗2) = v(G)

Remark 1.3. Without making any assumptions on the game, we have the inequality

sup
s1∈S1

inf
s2∈S2

g(s1,s2)≤ inf
s2∈S2

sup
s1∈S1

g(s1,s2),

thus, the maximum that player 1 can guarantee is always less or equal than what this player
defends. This reflects the fact that the situation in which player 1 has to choose first a strategy,
and player 2 can best-respond, is less advantageous to player 1 than the situation in which
player has to choose a strategy, and player 1 best-responds.

To prove the inequality, see that for any t1 ∈ S1 and t2 ∈ S2, we have

inf
s2∈S2

g(t1,s2)≤ g(t1, t2)≤ sup
s1∈S1

g(s1, t2)

so that for fixed t1, by taking the inf on the right side:

inf
s2∈S2

g(t1,s2)≤ inf
s2∈S2

sup
s1∈S1

g(s1,s2)

and the inequality obtains by taking the supremum of the left side over all t1.

Remark 1.4 (A proof of the minmax theorem through the Nash existence theorem). The
minmax theorem can be seen as a consequence of the Nash existence theorem. Indeed, if
we consider a Nash equilibrium (s∗1,s

∗
1), the Nash equilibrium property imply precisely that s∗1

maximises 1’s payoff over all s1 ∈ S1 against s∗2, and that s∗2 minimises 1’s payoff over all s2 ∈ S2
against S1. We thus have:

inf
s2∈S2

g(s∗1,s2) = sup
s1∈S1

g(s1,s∗2).

This means that player 1 can guarantee as much as he can defend, taking first a sup on the left
hand side, then the inf on the right-hand side, shows:

sup
s1∈S1

inf
s2∈S2

g(s1,s2)≥ inf
s2∈S2

sup
s1∈S1

g(s1,s2).

If we combine this with the inequality in remark 1.3, we obtain the stated properties in the
minmax theorem.

Remark 1.5. The second point of the minmax theorem tells us that the sup is a max, i.e. is
achieved at some point, and the same for the inf. Given the assumptions of our theorem, this is
not complicated to see. Indeed, for every s1 we have:

inf
s2∈S2

g(s1,s2) = inf
a2∈A2

g(s1,s2) = min
a2∈A2

g(s1,a2).
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and given that A2 is finite, the function s1 '→ mina2∈A2 g(s1,a2) is continuous, hence attains
its minimum on S1. A similar argument applies for player 2. For more complex games, the
existence of optimal strategies, x‘ i.e. achieving the min and the max, is a lot more complicated
problem, and sometimes an open one.

The proof of the minmax theorem through the Nash existence theorem is complete and rigorous,
nothing is missing. Yet, we are going to present an alternative proof of the minmax theorem.
The reason is that the Nash existence theorem is a complex one, derived through Kakutani or
Brouwer’s fixed point theorems, which assert the existence of fixed points for general functions
or correspondences. In a mathematical sense, the minmax theorem is much more basic and
simple, as it relies only on duality/separation theory. Hence we are going to show a proof that
uses only the required tools.

We present a visual proof of the minmax theorem when the set of strategies S1 for player 1 is an
arbitrary compact and convex set, and player 2 has a finite number of actions A2 = {1, . . . ,J}.
We define the set of achievable payoffs by 1 defined as the following subset of RJ

X = {(g(s1, j)) j∈A2 ,s1 ∈ S1}

When considering the maxmin, player 1 chooses a point x ∈ X that maximises min{x j, j ∈ A2}.
This point is found by looking the furthest point in X in the NE direction along the first diagonal.
Let x∗ be a corresponding such maximiser. We need to show that the minmax is less or equal
than v = min{x∗j , j ∈ A2}, i.e that there exists a mixed strategy of player 2 against which player
1 cannot achieve more than v.

We first separate coordinates for which x∗ achieves more than v from other ones. Let J̃ = { j ∈
A2,x∗j = v}. For coordinates j ∕∈ J̃, x∗j > v. Let X̃ be the projection of RA2 on RJ̃ , and consider

the subset of RJ̃: Ỹ = {x ∈ RJ̃, ∀ j ∈ J̃ x j > v}. Ỹ is an open, convex set and it doesn’t intersect
X̃ since otherwise player 1 could guarantee more than v.

By the separating hyperplane theorem, there exists a linear mapping f : RJ̃ →R,x '→ ∑ j∈J̃ α jx j
and a number c ∈ R such that

1. f (x)> c for every x ∈ Ỹ

2. f (x)≤ c for every x ∈ X̃ .

Since f has to be increasing in all arguments α j ≥ 0 for all j ∈ J̃, and at least one of α j is not
0. We also deduce by continuity that f ((v, . . . ,v)) = ∑ j∈J̃ α jv = c, so that v = c

∑ j∈J̃ α j
.

Page 7 of 15



1. ZERO-SUM GAMES

Figure 4: Illustration of the proof of the minmax theorem when player 1’s action set is compact
convex, player 2’s action set is {l,r}, and g is continuous.

Our next step is to reinterpret the coefficients α j as a mixed strategy for player 2. Let s∗2( j) =
α j

∑ j′∈J′ α ′
j

for j ∈ J̃, and s∗2( j) = 0 for j ∕∈ J̃. Consider any strategy a1 of player 1, and the corre-

sponding point x in X . We have

g(a1,s∗2) = ∑
j∈J̃

s∗2( j)x j

=
1

∑ j′∈J′ α ′
j
∑
j∈J̃

α jx j

≤ 1
∑ j′∈J′ α ′

j
c

= v

We have thus shown that, against the strategy s∗2, player 1 cannot obtain more than v and thus:

min
s2∈S2

max
s1∈S1

g(s1,s2)≤ v

Now we can conclude. Since we also know that

v = max
s1∈S1

min
s1∈S1

g(s1,s2)≤ min
s2∈S2

max
s1∈S1

g(s1,s2),

we have proven that:

max
s1∈S1

min
s2∈S2

g(s1,s2) = min
s2∈S2

max
s1∈S1

g(s1,s2) = v,
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2. CORRELATED EQUILIBRIUM

which is the minmax theorem.

2 Correlated equilibrium

In a Nash equilibrium, all players choose actions independently, and possibly randomly. The
Nash condition says that no player wants to change her own strategy, given the strategies of
the other ones. There are several reasons why players may not randomize independently. First,
they may have access to information based on which they make their own decisions. Since the
information received by different agents is correlated, so are their actions. Second, we may think
as a distribution of actions as a subjective belief in a player’s mind. Assume for instance a game
with several Nash equilibria, and one player who believes that others are playing one of these,
but not knowing which; in such a player’s mind, other player’s actions are not independent, they
are correlated.

Example 2.1 (Public randomisation in the battle of sexes). Consider the game of battle of sexes.
Both players have a choice between which concert to go to, either B(ach), or S(stravinsky).
Player 1 has a preference for Bach, and player 2 for Stravinsky. Players’ preferences include two
components, according to the first component, players like to be with each other, and according
to the second one, they like to go to their preferred concert.

B S
B 2.1 0,0
S 0,0 1.2

Figure 5: Game of the battle of sexes

This game has two Nash equilibria in pure strategies: (B,B) and (S,S). It also has an equilibrium
in mixed strategies: (2/3B+ 1/3S,1/3B+ 2/3S). The mixed strategies equilibrium yields an
expected payoff of 2/3 to each player, which is Pareto dominated by the payoff of each pure
equilibrium. Pure Nash equilibria are better than the mixed one, but they are unfair in the sense
that each provides more advantage to one player than to the other. A simple way that players
can choose between the two pure Nash equilibria is by flipping a fair coin, then play (B,B) if
the coin shows Heads, and (S,S) if the coin shows Tails.

Convince yourself that, in the game in which players first see the (common) outcome of the
coin, then decide to which concert they go, these strategies do form a Nash equilibrium. As-
suming that players follow these strategies, what is their distribution of actions? I.e. with what
probability do they end up playing each of the 4 action profiles (B,B), (B,S), (S,B), and (S,S)?
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The previous example shows how a correlation device can help randomize between equilibria.
In the next example, we show how the use of a randomization device can be useful beyond
randomization over Nash equilibria.

Example 2.2 (Rebel without a cause). In the movie “Rebel without a cause” (1955), two cars
race towards towards a cliff. See what happens here: https://www.youtube.com/watch?v=
u7hZ9jKrwvo. The rule of the game is “”We are both heading for the cliff, who jumps first, is
the Chicken”. We analyse this game by assuming each player has two strategies, “tough” (T ),
or “chicken” (C). If both players play tough, they both jump off the cliff. If one plays tough and
the other chicken, the tough one wins, and the chicken loses the face. If both play chicken, they
stop at the same time, so that no-one loses the face and both players can be good friends. The
payoff matrix given by figure 6.

C T
C 6.6 2,7
T 7,2 0.0

Figure 6: Game of chicken

This game has two Nash equilibria in pure strategies: (T,C) and (C,T ). It also has a symmetric
mixed strategies equilibrium: (2/3C+1/3T,2/3T +1/3T ). The symmetric equilibrium yields
an expected payoff of 14/3 to each player, which is Pareto dominated by a randomisation over
the two pure Nash equilibria with equal probabilities.

How can players generate a payoff which is equal to both of them (fairness) and even higher
than randomising between the two pure Nash equilibria? Consider the following system of
traffic lights. Assume that each player sees a light which may either be red (R) or green (G).
No player can see the light of the other one. There are three possibilities: the light of player 1
can be red while the light of player 2 is green, or the other way round, or both lights may be
red. The three possibilities have the same probability. We summarize the probabilities of signal
pairs in figure 7.

R G
R 1

3
1
3

G 1
3 0

Figure 7: Probabilities of signal pairs from traffic light: player 1’s signals are in rows, and
player 2’s are in columnds.

Now consider the following recommendations to the players: play T if your light is green, and
C if your light is red.

We check that these recommendations form a Nash equilibrium of the game with signals. If a
player receives a green signal, this player knows that the other must have received a red signal,
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Figure 8: Payoffs in the game of chicken

hence will play C. The only best-response is to play T in this case, which corresponds to the
recommended action. If a player receives a red signal, this player puts probability 1/2, 1/2 on the
other one receiving a red or a green signal, hence probability 1/2, 1/2 on his opponent playing
C or T . Against the strategy 1/2C+1/2T , playing C yields an expected payoff of 4, which is
more than the expected payoff of 7/2 obtained by playing T , hence the recommended action
C is the only best-response. We have thus shown that following the recommandations form a
Nash equilibrium.

When players follow the recommendations, they receive an expected payoff of 5 each, which is
strictly larger than 9/2 that obtained by randomising over the Nash equilibria.

2.1 Correlated Equilibrium Distributions

We consider a game G with finite action sets Ai. We let A = ΠiAi. Player i’s payoff function is
gi : A → R.

Definition 2.3. A correlated equilibrium distribution of G is a distribution µ ∈ ∆(A) such that,
for player i, and actions ai,bi ∈ Ai:

∑
a−i∈A−i

µ(ai,a−i)gi(ai,a−i)≥ ∑
a−i∈A−i

µ(ai,a−i)gi(bi,a−i) (1)

Page 11 of 15



2. CORRELATED EQUILIBRIUM

We let C(G) be the set of correlated equilibrium distributions of G.

In words. Consider the situation in which a mediator picks an action profile a ∈ A according
to the distribution µ , and informs each player i of the component ai of A. The distribution
µ is a correlated equilibrium distribution of G whenever the strategies that consist in playing
the recommended actions form a Nash equilibrium. The inequalities (1) precisely state that no
player i has incentives to deviate to action bi ∕= ai when action ai is recommended.

What can be said about the set of correlated equilibrium distributions?

Remark 2.4 (CED form a convex compact polyhedron). If we look at the system of equations
(1), we see that they are a finite set of weak inequalities on µ . This means that the set of
correlated equilibrium distributions C(G) is a closed, convex polyhedron. It is also bounded
as it is included in the set of all distributions, hence it is a compact set. In geometrical terms,
this is a much simpler type of set than the set of Nash equilibria, which are defined by algebraic
equations, i.e. ones that involve polynomials.

Remark 2.5 (Contains the Nash equilibrium distributions). Consider any Nash equilibrium in
mixed strategies s = (si)i of G, and the corresponding Nash equilibrium distribution µs given
by µs(a) = Πisi(ai). One can check easily that µs is a correlated equilibrium distribution of
G. Indeed, once knowing what action she has chosen, no player has incentives to change this
action to another one. This implies that every Nash equilibrium distribution is a correlated
equilibrium distribution. Furthermore the set of correlated equilibrium distributions contains
the convex hull of all the Nash equilibrium distributions, i.e. the set of all convex distributions
of Nash equilibrium distributions.

Remark 2.6 (Is not empty by the Nash existence theorem, but this is cheating!). Since any
finite game has a Nash equilibrium in mixed strategies, it also has a correlated equilibrium
distribution. This shows that the set of correlated equilibrium distributions is non-empty for
any finite game. This proof of existence is correct, but requires the use of a very sophisticated
instrument (fixed point theorems) in order to show to study a simple problem, which is a linear
one (defined by a finite set of linear weak inequalities). Hart and Schmeidler (1989) present
a basic proof of the existence of correlated equilibrium distributions that relies only on the
minmax theorem.

2.2 Correlated Equilibria

So far, we have studied games in which players receive signals that correspond to action recom-
mendations in G, and we looked for the joint distributions of signals for which every player has
incentives to follow these recommendations, should other players do the same. More generally,
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we can allow the set of signals to be any set, so that signals do not necessarily correspond to
actions in G.

For instance, look back at the game of “Battle of Sexes”, we can ask what happens if players do
not have a coin to flip, but may instead roll a die. The roll of the die, with its value 1, . . . ,6, is
then observed by both players. Players can agree on the following type of rule: if the result is
odd, coordinate on B, and if it even coordinate on S. We see that the strategies that correspond to
following the recommendations form a Nash equilibrium of the game in which players observe
the result of the die, then choose an action in the game.

I we break this down a little bit, this means that, for each player i, we have a set Xi of signals, and
there is a distribution µ ∈ ∆(X) over profiles of signals. We are considering the game which:

1. A joint signal x is drawn in X according to µ ,

2. Each player i observes the signal xi

3. Each player i then chooses an action ai, and we let a = (ai) the action profile

4. The payoff to each player i is gi(a).

A behavioral strategy for player i in this game is a mapping fi : Xi → Si, and if f : X → S is the
profile of strategies of the players, the corresponding vector payoff is:

γ( f ) = ∑
x

µ(x)g( f (x)).

We note by Γ(µ,G) the game above in which each player i chooses fi and the vector payoff
function is γ . Note that each strategy profile also induces a distribution of action profiles ν( f )∈
∆(A) given by:

ν( f )(a) = ∑
x

µ(x) f (x)(a).

When f is a Nash equilibrium of Γ(µ,G), we say that the corresponding distribution ν( f ) is
a correlated equilibrium distribution of G induced by µ . We let CED(µ,G) the set of such
correlated equilibrium distributions induced by µ .

The question that we are asking is whether 1) allowing for any set of signals (instead of im-
posing Xi = Ai) and 2) allowing players to choose any strategy (instead of just following the
recommendation) increases the set of equilibrium distributions generated. In fact, it doesn’t, as
shown by the following Theorem:
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Theorem 2.7 (Revelation principle). For every set of signal profiles X and every distribution µ
on X,

CED(µ,G)⊆C(G).

Note also that, by the definitions, whenever µ is a correlated equilibrium distribution, then µ is
a correlated equilibrium distribution induced by itself:

µ ∈C(G)⇒ µ ∈CED(µ,G).

The revelation principle together with the above remark imply that the set of correlated equi-
libria is the set of all correlated equilibria induced by all possible distributions over all possible
sets of signals.

The proof of the revelation principle is relatively straightforward. Consider a game G, a set
of signal profiles X , a distribution µ ∈ ∆(X) and an equilibrium f of Γ(µ,G) that induces a
distribution ν on A. Let P be the joint probability distribution on X and A induced by ν and f .

Consider the following “thought experiment”: a signal profile x is drawn according to µ , then
a in A is drawn according to f (x). Player i is informed of xi and of ai. Assuming players j ∕= i
play action a j, and player i is allowed to change from ai to any other action, should player i do
so? Of course not, since ai is an action chosen with positive probability after signal xi under the
equilibrium strategies f , it is optimal to play ai after receiving signal xi.

Consider the similar thought experiment, but in which player i is informed of ai only (and not of
xi). Can it be optimal now to change from ai to any other action? Intuitively not: since ai would
be optimal after any possible xi, it should also be optimal when xi is not known! To formalize
this, let B(ai) be the set of beliefs on A−i against which the action ai is optimal. This is the set
of beliefs for which no other action a′i gives a higher payoff than ai:

B(ai) = ∩a′i∈Ai
{q ∈ ∆(A−i),Eqg(ai,a−i)≥ Eqg(a′i,a−i)}.

Now, note that B(ai) is a convex polyhedron, as it is defined by a finite family of linear in-
equalities. The “convex” part is what we are interested for the following. We know that ai is
an optimal action after each pair (xi,ai) that happens with positive probability under P (by the
point above). Therefore we know that for every (xi,ai) such that P(xi,ai) > 0, the conditional
probability P(a−i|xi,ai) on A−i satisfies

P(a−i|ai) ∈ B(ai).

We want to show that, after receiving ai, it is optimal to choose action ai, thus we need to prove
that the conditional probability P(a−i|ai) also satisfies

P(a−i|xi,ai) ∈ B(ai).
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RATIONALITY REFERENCES

This is in fact a consequence of the convexity of B(ai), and of the following implication of
Bayes’s rule;

P(a−i|xi,ai) = ∑
xi

P(xi|ai)P(a−i|xi,ai).

3 Correlated rationalizability and common knowledge of ra-
tionality

cf. Lecture notes by Asu Ozdaglar, MIT.

Example 3.1. Guess the average!
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