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INFORMATIONAL CASCADES ELICIT PRIVATE INFORMATION∗
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We introduce cheap talk in a dynamic investment model with information

externalities. We first show how social learning adversely affects the credibility of

cheap talk messages. Next, we show how an informational cascade makes truth-

telling incentive compatible. A separating equilibrium only exists for high-surplus

projects. Both an investment subsidy and an investment tax can increase welfare.

The more precise the sender’s information, the higher her incentives to truthfully

reveal her private information.

1. INTRODUCTION

A decision maker typically faces a lot of uncertainty when deciding over a
course of action. For example, investors know they face the risk of losing all
their money. Students do not know which University degree maximizes their fu-
ture job market prospects. Consumers do not know which product offers the
best price/quality ratio . . . To be more specific, suppose someone has the oppor-
tunity to invest in a project whose returns are positively correlated with the “gen-
eral future health of the U.S. economy.” Obviously, assessing the future state of
the U.S. economy is a hard task and no human being is smart enough to make
an errorless prediction about it. However, investors do not live like Robinson
Crusoe—isolated on an island. Instead, they realize that the economy is popu-
lated by many other potential investors who all face the same type of risk. More-
over, they know that if they were to meet and exchange opinions, this would
enable them to reduce their forecasting error. But if investors really care about
one another’s opinions, how will this information be disseminated throughout the
economy?

Casual observation of everyday life suggests there are two different channels
through which investors may learn about one another’s opinions: One may learn
through words or one may learn through actions. With the former, we have in

∗ Manuscript received January 2002; revised August 2004.
1 We are indebted to C. Chamley for encouraging us to work on this topic and for his helpful

comments. This article also benefited from comments by A. Al-Nowaihi, I. Brocas, R. Burguet, M.

Dewatripont, A. Farber, D. Gerardi, G. Haeringer, P. Heidhues, P. Legros, A. Rivière, G. Roland,

P. Sørensen, X. Vives, two anonymous referees, and N. Persico, the associate editor. We also thank

seminar participants at the Gerzensee European Summer Symposium (2000), Center, IAE, Pompeu

Fabra, UAB, ULB, UCD, and WZB for helpful comments and discussions. Nicolas Melissas gratefully

acknowledges financial assistance provided by the European Commission through its TMR program

(Contract number FMRX-CT98-0203). Please address correspondence to: Nicolas Melissas, Depart-

ment of Economics, University of Leicester, University Road, Leicester LE1 7RH, U.K. Phone: +44

116 252 26 29. Fax: +44 116 252 29 08. E-mail: n.melissas@le.ac.uk.

297



298 GOSSNER AND MELISSAS

mind a situation in which one investor simply tells her opinion to (possibly many)
other investors. For example, every now and then managing directors of important
companies appear in the media and express their opinions on a wide range of
issues such as future technological developments, future oil prices, future market
growth, etc. Some institutions are even specialized in collecting and summarizing
the opinions of a large number of market participants. For example, the Munich-
based IFO institute for economic research releases a quarterly index reflecting
the business confidence of the average German investor. With learning through
actions, we mean that if someone invests in a one-million-dollar project in the
United States, this reveals her confidence in the American business climate.

In this article, we analyze the interaction between both communication chan-
nels. More specifically, we consider the following setup: N investors must take an
investment decision and possess some private information concerning the future
state of the economy. Investing is only profitable in the good state. For the sake
of simplicity, we assume that the returns of the investment project only depend
on the state of the economy. Hence, for reasons of efficiency all investors should
truthfully exchange their private information. There are two investment periods.
Prior to the first investment period, one investor appears in the media and is asked
to divulge her private information to the other investors. Prior to the second in-
vestment period, everyone observes who invested in the first period. We compute
all monotone stable perfect Bayesian equilibria2 (MSPBE) of our game.

We first show that both communication channels do not coexist peacefully, in
the sense that there does not exist an MSPBE in which the sender (i.e., the investor
who appears in the media) truthfully announces her private information and in
which subsequently a lot of information is generated through actions. This tension
between both communication channels manifests itself differently depending on
the surplus generated by the project: For low-surplus projects the unique MSPBE
is the pooling one,3 whereas for high-surplus projects there also exists an equilib-
rium in which the sender truthfully reveals her private information but in which
“little” information is transmitted through actions.

The intuition behind this result goes as follows: In our model, expected payoffs
are driven by the relative number of optimists in the economy (the higher the
proportion of optimists in the population, the higher the probability that the world
is in the good state). At time two, all players observe the number of period-one
investments and use this knowledge to get an “idea” of the proportion of optimists
in the economy. This updating process depends on the period-one investment
strategies4 (which are affected by the sender’s message). If the investment only
generates a low surplus, pessimists will—independently of the sender’s message—
never invest in the first period. Both sender’s types then want to send the message

2 Bluntly stated, in a monotone equilibrium we rule out the (unintuitive) possibility that pessimistic

investors are more likely to invest (in the first investment period) than optimistic ones.
3 In this equilibrium, no credible information is transmitted through words, but “a lot” of information

is transmitted through actions.
4 For example, on observing k period-one investments, players compute different posteriors if pes-

simists invested (at time one) with zero probability and optimists with a probability equal to one, than

if pessimists invested with the same probability as the optimists.
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that makes the optimists invest with as large a probability as possible.5 Thus, both
sender’s types share the same preferences over the receivers’ actions, and therefore
no information can be transmitted through cheap talk. For high-surplus projects,
however, this intuition is incomplete. In that case, all players face a positive gain of
investing after receiving the message “I am an optimist.” If a player then believes
that everyone will invest at time one, it’s optimal for her to do so too (i.e., an
informational cascade6 in which everyone invests is ignited by the arrival of a
favorable message). In our model, this informational cascade induces a pessimist
to send the message “I am a pessimist”: If she were to deviate and sent instead
the message “I am an optimist,” she would not be able to learn anything about
the proportion of optimists in the population and would never invest. An optimist
faces a high opportunity cost of waiting and, independently of her message, invests
at time one. Hence, she cannot gain by sending the message “I am a pessimist.”7

Our analysis allows us to draw some positive and normative conclusions. In
particular, we show that an investment subsidy, by artificially increasing the surplus
generated by the project, promotes truthful revelation of private information.
However, this does not mean that an investment subsidy always increases welfare:
A social planner knows that if the subsidy induces truthful revelation, this comes
at the cost of less information transmission through actions. In the article, we show
that a social planner may even want to tax investments to cause information to
be revealed through actions instead of words. Finally, we also show that a more
able sender (i.e., a sender possessing a more precise signal) has more incentives
to truthfully reveal her private information than a less able one.

This article belongs to the literature on informational cascades (see among oth-
ers Banerjee, 1992; Bikhchandani et al., 1992 (BHW hereafter); Chamley and
Gale, 1994; Chamley, 2004a; for an excellent overview and introduction to this
literature see Chamley, 2004b). Those papers assume away any preplay communi-
cation and study the efficiency properties of social learning (learning takes place
through actions only). Our results provide a justification for this approach: For
low-surplus projects, no information can be transmitted through words because
players want to influence their future learning capabilities. In those papers, the
public information is the consequence of some costly actions undertaken by the
early movers: For example, a second mover knows that the first mover is an op-
timist because she spent money to undertake a new investment project. Hence,
in those papers the credibility of the public information is not an issue. In this
article it is costless to send public information, and its credibility must therefore
be carefully checked. Those papers show how an informational cascade develops

5 If the sender succeeds for example in making the optimistic receivers invest with probability one,

she perfectly learns the proportion of optimists in the population.
6 All players—irrespective of their private information—rely on the public information (i.e., the

message of the sender) and take the same action at time one. By definition, this is an informational

cascade.
7 Note that in the separating equilibrium, information only gets transmitted through actions when

the sender announces “I am a pessimist.” As will become clear below, the amount of information

produced after the arrival of an unfavorable message is always lower than the one that would have

been produced in the absence of cheap talk (or in the pooling equilibrium).
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as a consequence of the arrival of some early (and credible) information. In this
article, we show that the causality can also be reversed: It is the informational
cascade, by reducing the gain of sending the message “I am an optimist,” which
causes the public information to be credible.

Doyle (2002) also introduces a social planner in a dynamic investment model
with information externalities but without cheap talk. In contrast to our paper,
pessimistic players do not possess an investment option and therefore never invest.
Hence, Doyle’s model does not feature an equilibrium in which pessimistic players
invest at time one and consequently blur the information contained in all players’
time-one investment decisions. Therefore, in his model, one would never want to
tax investments.

Gill and Sgroi (2003) analyze a setup in which a possibly “optimistic,” “pes-
simistic,” or “unbiased” sender is asked whether or not to endorse a product. On
hearing the sender’s message, receivers decide sequentially whether or not to buy
the product. Hence, in their model, receivers also learn through other receivers’
actions and through the sender’s message. In contrast to our article, the authors
assume that the sender does not want to learn about the receivers’ types (be-
cause, for instance, she already consumed the product and received her payoff).
Therefore, she cannot gain by misrepresenting her private information.8

Obviously, this is not the first paper to investigate the credibility of cheap talk
statements. In a seminal paper, Crawford and Sobel (1982) already analyzed the
issue of information transmission through cheap talk. However, in their model,
the receiver chooses an action that influences both players’ payoffs after having
received a message from the informed sender. In our model, the sender first sends
a message and then plays a (waiting) game with the receivers. Farrell (1987, 1988),
Farrell and Gibbons (1989), and Baliga and Morris (2002) also assume that both
players play a game after having received or sent a message. However, they con-
sider a very different game: in Farrell (1987, 1988) and Baliga and Morris (2002),
the communication stage is followed by a coordination game, whereas in Farrell
and Gibbons (1989), both players engage in a bargaining game after the commu-
nication stage. As we consider a (very) different game, we also get very different
results: Crawford and Sobel (1982) have shown how the credibility of cheap talk
statements are undermined when the sender and the receiver have different pref-
erences over the optimal action, Baliga and Morris (2002) argued that positive
spillovers impede information exchange, whereas we show how social learning
may destroy incentives for truth-telling (and how informational cascades help in
restoring these incentives).

This article is organized as follows. In Section 2, we present our two-stage game.
In Section 3, we take the players’ posteriors as given and solve for all monotone
stable continuation equilibria. The proofs of the results stated in this section tend
to be quite lengthy and we therefore decided not to include them in this article.
We refer the interested reader to Gossner and Melissas (2003). We next compute
equilibrium strategies in the sender–receiver game (Section 4). We first show

8 Sgroi (2002) analyzes a similar setup and computes the optimal number of senders. As in Gill and

Sgroi (2003), the senders are not interested in the receivers’ signals.
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how the credibility of cheap talk may be undermined when players can postpone
their investment decisions (Proposition 4). Next, we show how this credibility
can be restored by an informational cascade (Proposition 5). In Section 5, we
discuss some normative and positive implications of our theory. Final comments
are summarized in the sixth and final section.

2. THE MODEL

Assume that a population of N ≥ 5 risk neutral players must decide whether
to invest in a risky project or not. V ∈ {1, 0} denotes the value of the investment
project. The state of the economy is described by � ∈ {G, B}. If � = G the good
state prevails and V = 1, whereas if � = B, the economy is in a bad state and V =
0. The prior probability that � = G equals 1/2. The cost of the investment project
is denoted by c. Each player receives a private, conditionally independent signal
concerning the realized state of the world. Formally, player l’s signal sl ∈ {g, b}
(l = 1, . . . , N), where Pr(g | G) = Pr(b | B) = p > 1/2. We assume that

A1 : 1 − p < c < p.

A1 implies that a player who received signal g is, a priori, willing to invest
(Pr(G | g) = p > c), and that a player who received a signal b is, a priori, not
willing to invest (Pr(G | b) = 1 − p < c). Henceforth, we call a player who re-
ceived a good (bad) signal an optimist (pessimist).9 If c ≤ 1/2 (c > 1/2), we call
the investment opportunity a high (low) surplus project. We analyze the stage
game that unfolds as follows:

−1. The state of nature is realized and players receive signals.
0. A randomly selected player i is asked to report her signal. Her message,

ŝi ∈ {g, b}, is made public to all the other players.
1. All players make investment decisions.
2. All players observe who invested at time one, and those who haven’t

invested yet make new investment decisions.
3. All players learn the true state of the world. Payoffs are received and the

game ends.

In the first stage (time zero), player i (the sender) influences the time-one posteri-
ors of the remaining players (the receivers). Henceforth, we call the second stage
the waiting game (or the continuation game). At time one, player l must choose
an action, al, from the set {invest, wait}. At time two, all players who waited at
time one must choose an action from the set {invest, not invest}. Each player only
possesses one investment opportunity, so a period-one investor cannot invest in a
second project at time two. Investments are irreversible. If a player does not invest

9 Observe that in our model, all players are Bayesian rational: Optimists (pessimists) do not over-

estimate (underestimate) the probability that � = G. Hence, our definitions differ from the ones that

are used by behavioral economists. However, these definitions are intuitive and should not confuse

the reader.
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in any of the two periods, she gets zero. Investment decisions at period one are
represented by a N-vector x, where the lth coordinate equals 1 if player l invested
at time one and zero otherwise. δ denotes the discount factor.

We let ht (t = 0, 1, 2) denote the history of the game at time t. Thus, h0 =
{∅}, h1 = ŝi , and h2 = (ŝi , x). Ht denotes the set of all possible histories at time t,
and the set of histories is H = ⋃2

t=0 Ht . A symmetric behavioral strategy for the
receivers is a function ρ : {g, b} × H → [0, 1] with the interpretation that ρ(sj, ht)
represents the probability of investing at date t given sj and ht ( j = 1, . . . , N and
j �= i). For instance, ρ(g, b) is the probability that an optimistic receiver invests
at time one given that ŝi = b, and ρ(b, g) is the probability that a pessimistic
receiver invests at time one given that ŝi = g. Since each player can only invest
once, ρ(sj, h2) = 0 if player j invested at time one, and ρ(sj, h0) = 0 since no one can
invest at time zero. A behavioral strategy for the sender is a function σ : {g, b} ×
H → [0, 1]. σ (g, h0) (σ (b, h0)) represents the probability with which an optimistic
(pessimistic) sender sends ŝi = g. σ (·, h1) (σ (·, h2)) represents the probability that
player i invests at date one (two). As before, σ (·, h2) = 0 if the sender invested in
the first period.

When solving our game, we rely on four equilibrium selection criteria.
First, we require a candidate equilibrium to belong to the class of the per-
fect Bayesian equilibria. Henceforth, σ ∗(·) (ρ∗(·)) denotes the value taken
by σ (·) (ρ(·)) in a perfect Bayesian equilibrium (PBE). In a PBE, strate-
gies and beliefs (concerning the other players’ types) must be such that (i)
the sender cannot gain by choosing a σ �= σ ∗ given her beliefs and given
ρ∗, (ii) receivers cannot gain by choosing a ρ �= ρ∗ given their beliefs and
given σ ∗, and (iii) beliefs must be computed using Bayes’s rule whenever
possible. As usual, a pooling equilibrium is a PBE in which σ ∗(g, h0) =
σ ∗(b, h0). In that case, the message ŝi = g is as likely to come from an opti-
mistic as from a pessimistic sender. Hence, in that case, messages have no in-
formational content and do not affect posteriors. For the sake of concreteness
(and without loss of generality), we assume that σ ∗(g, h0) ≥ σ ∗(b, h0). This as-
sumption merely defines message ŝi = g as the one that influences posteriors in
a (weakly) favorable way. Under this assumption, a separating equilibrium is a
PBE in which σ ∗(g, h0) = 1 and σ ∗(b, h0) = 0. Note that at time one the posterior
of the receivers may differ from the sender’s. Therefore, we do not impose σ ∗(g,
h1) to be equal to ρ∗(g, h1). Similarly, we allow σ ∗(b, h1) to be different from
ρ∗(b, h1).

Second, we restrict ourselves to the class of the monotone strategies. Consider
players l and l′ (where l or l′ may be the sender). Let q ≡ Pr(G | sl , ŝi ) (respectively,
q′ ≡ Pr(G | sl ′ , ŝi )) denote player l’s (respectively, player l′’s) time-one posterior.
Strategies are said to be monotone if they possess the following two properties:
(i) if q = q′, then Pr(l invests at time one) = Pr(l ′ invests at time one), (ii) if Pr(l
invests at time one) > Pr(l ′ invests at time one), then q > q′. Remark that from the
first property, monotone strategies are symmetric. Note also that the first property
implies that whenever the sender’s message is uninformative, the sender invests at
time one with the same probability as a receiver of the same type, which need not
hold in symmetric strategies. Property two implies that the time-one investment
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probabilities (weakly) increase in the time-one posteriors. Below, we will explain
in more detail our need to focus on monotone strategies.

Third, we discard unstable equilibria. With “unstable,” we refer to the traditional
notion according to which an equilibrium is unstable if a small change in the
investment probability of the other players induces a change in player l’s optimal
investment probability with the same sign and with a greater magnitude. This
equilibrium selection criterion has also been used in the study of coordination
problems (see, e.g., Cooper and John, 1988; Chamley, 2003). Chamley (2004a)
already noted their existence in games with social learning. This requirement will
also be explained in more detail below.

Finally, we require every candidate equilibrium to be robust to the introduction
of an ε-reputational cost. More specifically, we assume that with probability ε1,
receivers detect any “lie” (i.e., the optimistic sender who sends message ŝi = b,
or the pessimistic sender who sends message ŝi = g) from the sender, in which
case she suffers a reputational cost equal to ε2. It is important to note that ε1

is unrelated to the sender’s behavior in the continuation game. This assumption
ensures that the sender’s behavior in the continuation game is only driven by
informational reasons (and not by her desire to “mask” a past lie). Let ε ≡ ε1.ε2

and we assume that ε represents an arbitrary small, but strictly positive, number.
With this reputational cost, an optimistic sender prefers to send a favorable to
an unfavorable message (as will become clear below, in the absence of this ε, she
would be indifferent between the two messages).

An MSPBE is a tuple of strategies and beliefs that satisfy our four equilibrium
selection criteria.

3. STRATEGIC WAITING

Before proving the existence of a PBE in our game, we analyze equilibrium
behavior in the continuation game. We restrict ourselves to the class of the mono-
tone stable continuation equilibria (MSCE). Henceforth, σ̃ (·) (ρ̃(·)) denotes the
value taken by σ (·) (ρ(·)) in an MSCE. An MSCE is identical to an MSPBE ex-
cept that we do not require the sender to choose σ̃ (g, h0) and σ̃ (b, h0) optimally
given her beliefs and given equilibrium behavior in the continuation game. Stated
differently, in an MSCE, we do not endogenize the receivers’ time-one posteriors.
Instead, we just treat them as if they were exogenous and analyze equilibrium be-
havior in the continuation game given players’ posteriors. Note that every MSPBE
is an MSCE, whereas the contrary need not hold.

In our companion paper (Gossner and Melissas, 2003), we characterized the
set of MSCEs for all possible time-one posteriors. Unfortunately, this charac-
terization required a quite lengthy, technical, and not very interesting expo-
sition. To avoid this lengthy exposition, in this article we “only” intuitively
explain our most important results. Moreover, when providing an intuition, we
often restrict our attention to the limit case in which (i) the sender is an opti-
mist who truthfully reports her private information and (ii) receivers compute
their posteriors under the assumption of truthful revelation. In this limit case,
optimistic receivers possess two favorable pieces of information and compute
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Pr(G | s j = g, ŝi = g) = p2/(p2 + (1 − p)2) ≡ q̄. Pessimistic receivers possess two
contradictory pieces of information and compute Pr(G | s j = b, ŝi = g) = 1/2.

Our model is void of any competition effects or positive network externalities.
Hence, a player’s expected gain of investing is solely determined by the relative
number of optimists (as compared with the number of pessimists) in the popula-
tion. Denote by n the random number of optimists in our population. The higher
n, the higher Pr(G | n) and the higher the expected gain of investing. Unfortu-
nately, by postponing one’s investment decision, players observe x, the vector of
time-one investment decisions, instead of n. Hence, at time two, all players who
waited at time one face an inference problem: On the basis of x, they must try to
get “as precise an idea” about n.

As we only consider symmetric strategies, player i does not care about who
invests, but rather in how many players invest. Therefore, from the sender’s point
of view, all information contained in x can be summarized by ks (the number of
receivers who invest at time one).10 Similarly, from a receiver’s point of view, all
information contained in x can be summarized by k (the number of remaining
receivers who invest at time one) and ai (the time-one action of the sender).

We thus continue our analysis by working with k, ks, and ai. If player j waits, she
observes k and ai and invests if Pr(G | q, k, ai ) ≥ c. Hence, for a given k and ai,
player j’s payoff equals max{0, Pr(G | q, k, ai ) − c}. Of course, player j cannot ex
ante know the realization of k and ai. Therefore, player j’s ex ante gain of waiting
(net of discounting costs), W(q, σ 1, ρ1), equals

W(q, σ1, ρ1) =
∑

ai

∑
k

max{0, Pr(G | q, k, ai ) − c} Pr(k | q, ai ) Pr(ai | q)(1)

where ρ1 ≡ (ρ(b, h1), ρ(g, h1)) and σ 1 ≡ (σ (b, h1), σ (g, h1)). Similarly, player i’s
gain of waiting, W(q, ρ1), equals

W(q, ρ1) =
∑

ks

max{0, Pr(G | q, ks) − c} Pr(ks | q)(2)

To gain some insight behind Equations (1) and (2), it is useful to consider Equation
(1) when q = q̄ (i.e., when player j is an optimist who believes the sender to be
optimistic as well), σ 1 = (0, 0) (i.e., when the sender invests with probability zero),
and ρ1 = (0, ρ(g, g)) (i.e., pessimistic receivers wait, whereas the optimistic ones
invest with probability ρ(·)). Equation (1) can then be rewritten as

W(q̄, (0, 0), (0, ρ(g, g))) =
∑

k

max{0, Pr(G | q̄, k, wait) − c} Pr(k | q̄, wait)(3)

Suppose that ρ(g, g) = 0. If player j waits, she will then observe zero investments
and compute Pr(G | q̄, 0, wait) = q̄. This is intuitive: Player j, independently of n,
always observes zero period-one investments. Stated differently, if ρ (g, g) = 0, it is

10 In mathematical terms, we mean that Pr(n | x, si ) = Pr(n | ks , si ), ∀n.
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as if she does not receive any additional information concerning the realized state
of the world. Therefore, she has no reason to change her posterior and Pr(G | q̄, 0,

wait) = q̄. Hence,

W(q̄, (0, 0), (0, 0)) = q̄ − c

Suppose now that ρ(g, g) = 1. Then, in the next period, player j learns how many
optimists are present in the economy (i.e., n = k + 2).11 At time two, player j
computes Pr(G | n), and invests if Pr(G | n) ≥ c. As before, player j cannot ex ante
know how many optimists are present in the economy, and therefore

W(q̄, (0, 0), (0, 1)) =
∑

n

max{0, Pr(G | n) − c} Pr(n | q̄)(4)

LEMMA 1. ∀ σ 1, W(q, σ 1, (0, 1)) > q − c.

PROOF. See Gossner and Melissas (2003). To gain some intuition behind
Lemma 1, we explain why ∀c ∈ (1 − p, p), W(q̄, (0, 0), (0, 1)) > q̄ − c whenever
our economy consists of at least five players. We can rewrite player j’s gain of
investing as follows:

q̄ − c =
∑

n

Pr(G | n) Pr(n | q̄) − c

Suppose ρ1 = (0, 1) and assume that player j decides to wait at time one
and then to invest unconditionally (i.e., to invest at time two independently
of n). The above equality merely states that investing at time one is payoff-
equivalent (net of discounting costs) to unconditionally investing at time two.
Equation (4) teaches us that waiting (when ρ1 = (0, 1)) is equivalent to mak-
ing an optimal conditional second-period investment decision. Observe that
n cannot take a value lower than two because both players j and i are as-
sumed to be optimists. If Pr(G | n = 2) is higher than or equal to c, then
the optimal conditional second-period investment decision always coincides
with unconditionally investing at time two. This means that q̄ − c is equal to
W(q̄, (0, 0), (0, 1)). Hence, W(q̄, (0, 0), (0, 1)) is strictly greater than q̄ − c if
(and only if) Pr(G | n = 2) < c. In this model, all players possess a signal of
the same precision. Therefore, ∀ c ∈ (1 − p, p), it takes three pessimistic re-
ceivers to restrain an optimist, who learned through the sender’s message that
si = g, from investing (and therefore N must be greater or equal than five).

To focus on the interesting parameter range, we assume:

A2 :
q̄ − c

W(q̄, (0, 0), (0, 1))
< δ < 1.

11 By assumption, player j is an optimist who waited at time one. Moreover, we analyze a case in

which player j learned (through the sender’s message) that si = g. Therefore, n = k + 2.
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The first inequality of A2 puts a lower bound on the discount factor δ such that
an optimistic receiver, who learned (through the sender’s message) that si = g,
faces a positive option value of waiting (i.e., if player j expects all the optimistic
receivers to invest and all the other players to wait, then she rather waits). The
first inequality ensures thus that ρ̃(g, g) < 1. The second inequality ensures that
ρ̃(g, g) > 0.

LEMMA 2. ∀ρ ′(g, h1) > ρ(g, h1), W(q, σ 1, (0, ρ ′(g, h1))) ≥ W(q, σ 1, (0, ρ(g,
h1))), and there exists a value ρc(q) such that the inequality becomes strict whenever
ρ ′(g, h1) > ρc(q) (ρc(q) ∈ [0, 1)).

PROOF. See Gossner and Melissas (2003). From Lemma 2 follows:

COROLLARY 1. ∀ ρ ′(g, h1) > ρ(g, h1),

(i) W(p, (0, ρ ′(g, h1))) ≥ W(p, (0, ρ(g, h1))), where the inequality becomes
strict whenever ρ ′(g, h1) > ρc(p) (ρc(p) ∈ (0, 1)),

(ii) W(1 − p, (0, ρ ′(g, h1))) > W(1 − p, (0, ρ(g, h1))).

PROOF. See Gossner and Melissas (2003). A slightly different version of Corol-
lary 1 was already proven in Chamley and Gale (1994, Proposition 2). To under-
stand the intuition behind Lemma 2 and Corollary 1, compare the following two
“scenarios.” In scenario one, all optimistic receivers randomize with probability
ρ ′(g, g), and in scenario two, all optimistic receivers randomize with probability
ρ(g, g) < ρ ′(g, g). Denote by nr the number of optimistic receivers. Call k′ (re-
spectively, k) the number of players investing at time one when nr − 1 optimistic
receivers invest with probability ρ ′(g, g) (respectively, ρ(g, g)). Now, having nr − 1
players investing with probability, ρ(g, g) is ex ante equivalent to the following
two-stage experiment: First, let all nr − 1 players invest with probability ρ ′(g, g);

next let all k′ investors rerandomize with probability
ρ(g, g)
ρ ′(g, g)

. Therefore, the statistic

k is generated by adding noise to the statistic k′. Therefore, k′ is a sufficient statistic
for k. From Blackwell’s value of information theorem (1951), we know that this
implies that W(q̄, (0, 0), (0, ρ ′(g, g))) ≥ W(q̄, (0, 0), (0, ρ(g, g))). Lemma 2 states
that the inequality becomes strict once ρ ′(g, g) passes a critical threshold level.

Stated differently, ρ(g, g) captures the ex ante amount of information produced
by the optimistic receivers. The higher ρ(g, g), the easier one can infer n out of
k (this can best be seen by comparing the two polar cases where ρ(g, g) = 0 and
ρ(g, g) = 1; see above) and thus the higher the ex ante gain of waiting.

PROPOSITION 1. If the investment generates a low surplus and if Pr(G | s j =
g, ŝi = g) > p, there exists a unique MSCE in which the sender and the pes-
simistic receivers wait, whereas the optimistic receivers invest with probability
ρ̃(g, g) ∈ (0, 1).

PROOF. See Gossner and Melissas (2003). To understand the intuition behind
Proposition 1, we focus on our limit case in which Pr(G | g, g) = q̄. As c > 1/2 =
Pr(G | b, ŝi = g), no pessimist wants to invest at time one. Suppose the optimistic
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FIGURE 1

EXISTENCE OF AN MSCE IN WHICH ρ̃(g, g) ∈ (0, 1)

receivers anticipate that the optimistic sender waits. On the basis of A2 and
Lemma 2, it is easy to see that there exists then a unique ρ̃(g, g) that makes
them indifferent between investing and waiting. This is depicted in Figure 1.

We now explain why the optimistic sender wants to wait given that the remain-
ing optimistic receivers invest with probability ρ̃(g, g). Consider therefore the
following lemma (and its first corollary).

LEMMA 3. ∀ (σ 1, ρ1), δW(q, σ 1, ρ1) − (q − c) is decreasing.

PROOF. See Gossner and Melissas (2003). Lemma 3 is illustrated in
Figure 2.

Suppose player j anticipates that � = G with some probability q. As before,
Figure 2 shows the existence of a unique ρ̃(·) where the gain of investing equals the

FIGURE 2

THE EFFECT OF A CHANGE IN q ON q − c AND W(·)
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gain of waiting. Suppose now that for some exogenous reason, player j becomes
“more optimistic” in the sense that she now anticipates that �= Gwith probability
q′ > q. An increase in q shifts the gain of waiting upward for two different reasons:
(i) It increases the likelihood that Pr(G | q, k, ai ) > c and thus that player j will
get a nonzero expected utility and (ii) it increases her expected gain of investing
whenever player j does so. However, the presence of δ in front of W(q, ·) (and not
in front of q − c) dampens this increase in δW(q, ·), which explains Lemma 3.

COROLLARY 2: Suppose the sender and the pessimistic receivers wait (i.e.,
σ (b, ŝi ) = σ (g, ŝi ) = ρ(b, ŝi ) = 0). Then, ρ̃(g, ŝi ) is increasing in Pr(G | g, ŝi ).

The corollary is also illustrated in Figure 2: As the upward shift of the gain of
investing dominates the one of the gain of waiting, ρ̃(·) must increase to make an
optimistic receiver indifferent between investing and waiting.

We now know enough to understand why the optimistic sender wants to wait
given that Pr(G | g, g) = q̄ and that all optimistic receivers invest with probability
ρ̃(g, g). Two different reasons lie at the root of this finding: The first one is due
to the fact that the sender observes ks instead of k, the second one is due to
the fact that p < q̄. To illustrate the first reason, suppose the sender’s posterior
probability that � = G equals the one of the optimistic receivers. One can think
of the statistics k and ks as follows. Let the nr optimistic receivers invest with
probability ρ̃(·). Next, construct k as follows: If player j invested,12 k = ks − 1,
otherwise k = ks. Hence, ks is a sufficient statistic for k and, thus, player i’s gain of
waiting cannot be lower than player j’s. To illustrate the second reason, suppose
that if the sender waits, she observes k instead of ks. Call a the probability with
which the optimistic receivers must invest such that p − c = δW(p, (0, a)) (i.e.,
such that an optimistic sender is indifferent between investing and waiting). As
q̄ > p, from Corollary 2 we know that ρ̃(g, g) > a. From Corollary 1, this implies
that p − c < δW(p, (0, ρ̃(g, g))).

COROLLARY 3. Under A2, q − c < δW(q, (0, 0), (0, 1)).

PROOF. A2 states, among other things, that q̄ − c < δW(q̄, (0, 0), (0, 1)). From
Lemma 3, we know that the downward shift of the gain of investing dominates
the one of the gain of waiting. �

In words, Corollary 3 states that if a player who possesses the highest possible
posterior faces a positive option value of waiting, then this will also be true for all
less optimistic ones.

PROPOSITION 2. There does not exist an MSCE in which the optimistic sender,
after having sent an unfavorable message, gets a payoff strictly higher than p− c − ε.

PROOF. See Gossner and Melissas (2003). As the optimistic sender “lied,” she
suffers an ε-reputational cost. Thus, if she invests, she gets p− c − ε. If she waits, she

12 Remember that player j is an optimistic receiver who is indifferent between investing and waiting

and who, therefore, invests with probability ρ̃(·).
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gets δW(p, ρ̃1) − ε. Hence, if her payoff strictly exceeds p − c − ε, this means that
she strictly prefers to wait. Suppose there exists an MSCE in which σ̃ (g, b) = 0.
As she sent an unfavorable message, she is the most “optimistic” player in our
economy (i.e., Pr(G | b, ŝi = b) < Pr(G | g, ŝi = b) ≤ p). As we restrict attention to
monotone strategies (in particular, this implies that time-one investment probabil-
ities must weakly increase in time-one posteriors), ρ̃(g, b) ≤ σ̃ (g, b) = 0. Clearly,
this cannot be an MSCE as the optimistic sender, anticipating that no receiver
will invest at time one, then strictly prefers to invest. In our companion pa-
per, we prove that if the optimistic sender sends ŝi = b, there exists a unique
MSCE in which σ̃ (g, b) > 0. This implies that her payoff can then not exceed
p − c − ε.

The explanation above also underscores our need to focus on monotone strate-
gies. Lemma 3 and Corollary 2 already establish that, in equilibrium, the time-
one investment probabilities of the receivers (weakly) increase in their time-
one posteriors. However, consider a candidate continuation equilibrium in which
ρ̃(g, b) ∈ (0, 1) and in which the optimistic sender, despite being the most “op-
timistic” player in the economy, strictly prefers to wait on the grounds that she
observes ks instead of k. Lemma 3 and Corollary 2 are not sufficient to rule out
those kind of nonmonotone candidate continuation equilibria. We decided not to
study nonmonotone equilibria in this article as we would not expect them to con-
stitute a natural focal point of our game. More research is needed to investigate
their existence and their welfare properties.

PROPOSITION 3. If the investment generates a high surplus and if Pr(G | s j =
b, ŝi = g) = 1/2, there exist two (and only two) MSCEs. In the first one, the opti-
mistic receivers invest with probability ρ̃(g, g) ∈ (0, 1), whereas the other players
wait. In the second one, the optimistic sender together with all (optimistic and pes-
simistic) receivers invest at time one.

PROOF. See Gossner and Melissas (2003). As mentioned above, if Pr(G | b, g) =
1/2, this means that (i) the sender truthfully announced that she is an optimist and
(ii) receivers compute their posteriors under the assumption of truthful revelation.
For the same reasons as the ones explained above, there exists an MSCE in which
only the optimistic receivers randomize at time one. As the investment generates
a high surplus, at time one both the optimistic and the pessimistic receivers face
a positive gain of investing. Suppose player j anticipates that everyone invests at
time one. Player j knows that the sender is an optimist. Thus, she does not expect to
learn something about the sender’s type by observing her time-one action. Hence,
player j only wants to wait to learn something about the other receivers’ types.
However, the other receivers, independently of their types, also invest at time one.
Hence, player j cannot learn by waiting and, because of discounting, prefers to
invest at time one.

Note that in this MSCE, all receivers possess some public (i.e., the favorable
message sent by player i) and some private information (i.e., their signals). All
receivers, independently of their signals, rely on the public information by in-
vesting at time one. This behavior is identical to the one followed by the players
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FIGURE 3

AN UNSTABLE CONTINUATION EQUILIBRIUM WHEN ONLY PESSIMISTIC RECEIVERS RANDOMIZE

inside an informational cascade in BHW’s (1992) and Banerjee’s (1992) mod-
els. In those models, all players also possess some public (i.e., the action(s) of
the first mover(s)) and private information (i.e., their signals) and, independently
of their signals, adopt the same action. Therefore, we call the MSCE in which
all receivers invest at time one an informational cascade. Chamley (2004a) has
shown that this informational cascade does not hinge on our use of a binomial
distribution. Rather, it can be recovered under a wide range of distributional
assumptions.

The reader may wonder why there does not exist a third MSCE in which only
the pessimistic receivers randomize. The answer is simple: That continuation equi-
librium is not stable. To understand this, consider Figure 3.

Suppose player j is a pessimistic receiver who believes the sender to be op-
timistic. Figure 3 depicts player j’s gain of investing and her gain of waiting as
a function of ρ(b, g). If ρ(b, g) = 0, at time two player j will learn how many
optimists are present in the economy and her gain of waiting is maximal. If
ρ(b, g) = ρ(b, g) = 1, all receivers, independent of their types, invest at time
one, and player j’s gain of waiting is minimal. Figure 3 reveals the existence of
a continuation equilibrium in which all pessimistic receivers invest with proba-
bility a. More important, the figure also shows that player j’s gain of waiting is
decreasing in ρ(b, g). This is intuitive: When only pessimistic receivers randomize
(whereas the optimistic receivers invest), the act of waiting becomes informative.
The higher ρ(b, g), the harder it is to infer n on the basis of k, and the lower a
player’s gain of waiting. As player j’s gain of waiting is decreasing in ρ(b, g), from
Figure 3 it is clear that a small increase (decrease) in ρ(b, g) induces player j to
increase (decrease) her equilibrium investment probability from a to one (a to
zero). Hence, that equilibrium is unstable.



INFORMATIONAL CASCADES ELICIT PRIVATE INFORMATION 311

4. CHEAP TALK

We now analyze player i’s incentives to truthfully reveal her private information
at time zero. One may think about player i in two ways. First, one may interpret
player i as a “guru” whose opinion concerning investment matters is often asked
by the media. Second, given our assumptions one would want to introduce an
opinion poll (instead of just interviewing one player) at time zero. Unfortunately,
analytical results are harder to get when one introduces other players at time zero.
Therefore, one can also interpret our model as one explaining “the economics of
opinion polls” under the simplifying assumption that the size of the opinion poll
equals one. We first state and prove the following “negative” result.

PROPOSITION 4. For low-surplus projects, there exists a unique MSPBE. In that
equilibrium, the optimistic and the pessimistic senders send ŝi = g. This MSPBE is
supported by the out-of-equilibrium belief that if ŝi = b, the sender is a pessimist.

PROOF. The proposition is proven in two different steps. First, we prove that
σ ∗(b, h0) must be equal to σ ∗(g, h0). Next, we explain why σ ∗(b, h0) = σ ∗(g, h0) =
1. The proof of the first step appears below. The proof of the second step, which is
less insightful, can be found in the appendix. We decided to follow this “two-step
procedure” to better highlight the role played by the ε-reputational cost in our
model.

Suppose there exists an MSPBE in which σ ∗(g, h0) > σ ∗(b, h0). This can only
be an equilibrium if the pessimistic sender does not want to deviate, that is, if

E(Ui | si = b, ŝi = b) ≥ E(Ui | si = b, ŝi = g)

If the sender sends “I am a pessimist,” in our companion paper we have proven
that our continuation game is then characterized by a unique MSCE in which σ ∗(g,
b) = 1 and ρ∗(g, b) ∈ [0, 1). If the sender sends “I am an optimist,” Pr(G | g, g) > p
and from Proposition 1, we know that in the continuation game the sender and the
pessimistic receivers wait, whereas the optimistic receivers invest with probability
ρ∗(g, g) ∈ (0, 1). We now argue that ρ∗(g, b) < ρ∗(g, g). If ρ∗(g, b) = 0, it trivially
follows that ρ∗(g, b) < ρ∗(g, g). Therefore, suppose that ρ∗(g, b) > 0. In that case,
both probabilities are solutions of the following system of two equations:

δW(Pr(G | g, b), (0, 1), (0, ρ∗(g, b))) − (Pr(G | g, b) − c) = 0(5)

δW(Pr(G | g, g), (0, 0), (0, ρ∗(g, g))) − (Pr(G | g, g) − c) = 0

Suppose Equality (5) is satisfied. From Lemma 3 then follows that

δW(Pr(G | g, g), (0, 1), (0, ρ∗(g, b))) − (Pr(G | g, g) − c) < 0
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In Gossner and Melissas (2003, Lemma 5), it is proven that

δW(Pr(G | g, g), (0, 0), (0, ρ∗(g, b))) ≤ δW(Pr(G | g, g), (0, 1), (0, ρ∗(g, b)))

This is intuitive: A receiver’s gain of waiting cannot decrease if the sender chooses
a more informative time-one strategy. Hence,

δW(Pr(G | g, g), (0, 0), (0, ρ∗(g, b))) − (Pr(G | g, g) − c) < 0

and from Lemma 2 then follows that ρ∗(g, b) < ρ∗(g, g). From Corollary 1, we
know that this implies that

δW(1 − p, (0, ρ∗(g, b))) < δW(1 − p, (0, ρ∗(g, g)))

The left-hand side of the inequality above represents E(Ui | si = b, ŝi = b),
whereas the right-hand side represents E(Ui | si = b, ŝi = g) + ε. Hence, in the
absence of an ε-reputational cost E(Ui | g, b) < E(Ui | g, g), which contradicts
the necessary condition we identified earlier. As ε is sufficiently close to zero,
the pessimistic sender still strictly prefers to send “I am an optimist” to “I am a
pessimist,” and, thus, for low-surplus projects, no information can be transmitted
through words. �

Intuitively, there does not exist an MSPBE in which σ ∗(b, h0) < σ ∗(g, h0) be-
cause if player i were to send an unfavorable message, this reduces the optimistic
receivers’ gain of investing and consequently the equilibrium probability ρ∗(g, ·).
As it becomes then more difficult for the sender to infer n out of k, this reduces
the sender’s gain of waiting.

The intuition why σ ∗(b, h0) = σ ∗(g, h0) = 1 is based on our ε-reputational cost.
As messages do not affect posteriors, the optimistic sender cannot influence her
gain of waiting. To avoid paying ε, she thus strictly prefers to send ŝi = g. The
pessimistic sender knows that σ ∗(g, h0) = 1. As argued above, if she sends ŝi = g,
she learns more (about the receivers’ types) than by sending ŝi = b (note, however,
that this will be at the expense of her reputation). As ε → 0, she also strictly prefers
to send ŝi = g instead of ŝi = b.

Note that Proposition 4 fundamentally relies on the assumption that players
can wait and observe the period-one investment decisions. If players were not
allowed to observe past investment decisions, our game would be characterized
by a unique PBE in which σ ∗(g, h0) = 1 and σ ∗(b, h0) = 0. The intuition is simple:
If the sender is optimistic she will, independent of her message, invest in the
first period. If she is pessimistic she will, independent of her message, not invest.
Hence, to save on the ε-reputational cost, a sender strictly prefers to truthfully
report her type. Hence, Proposition 4 shows how the credibility of cheap talk
statements can be adversely affected when players can learn through actions. As
we mentioned in our introduction, the literature on social learning (see, among
others, Banerjee, 1992; BHW, 1992; Chamley and Gale, 1994; Chamley, 2004a)
assumes that information only gets revealed through actions. As those models are
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void of any competition effects, some economists wonder why information should
not be revealed through words.13 Proposition 4 thus provides a justification for
the “ad hoc” omission of a cheap-talk communication channel in many herding
models. This article also possesses a more “positive” result, which is summarized
below.

PROPOSITION 5. For high-surplus projects, our game is characterized by two
MSPBEs: a pooling and a separating one. In the separating equilibrium, all re-
ceivers, independent of their types, invest at time one if ŝi = g. If ŝi = b, the op-
timistic receivers invest with probability ρ∗(g, b), whereas the remaining players
wait. In the pooling equilibrium, both sender’s types send ŝi = g. The pooling equi-
librium is supported by the out-of-equilibrium belief that if ŝi = b, the sender is a
pessimist.

PROOF. The existence of a separating equilibrium is proven below. The exis-
tence of a pooling equilibrium is proven in the appendix. Finally, in the appendix,
we also prove the nonexistence of an MSPBE in which σ ∗(b, h0) < σ ∗(g, h0).

Suppose the investment project is a high surplus one (i.e., c ≤ 1/2) and that all
receivers revise their posteriors under the assumption that σ ∗(b, h0) = 0 and that
σ ∗(g, h0) = 1. Consider first the optimistic sender. From Proposition 2, we know
that if she deviates and sends ŝi = b, her payoff cannot exceed p− c − ε. If she sends
ŝi = g, from Proposition 3, we know that there exists a continuation equilibrium
in which all receivers, along with the optimistic sender, invest at time one. Hence,
absent the ε-reputational cost, an optimistic sender is indifferent between the two
messages. If she prefers not to be caught “lying,” she strictly prefers to truthfully
report her signal. Consider now the pessimistic sender. If she sends ŝi = b, c ≤
Pr(G | g, ŝi = b) = 1/2. We now argue that ρ∗(g, b) > 0 if c < 1/2. As all receivers
know si at time one, no additional information (about the sender’s type) can be
learned through the observation of ai. Therefore, a receiver’s gain of waiting is
independent of σ 1.14 Hence, if Pr(G | g, b) = 1/2 > c,

δW
(

1

2
, (0, 1), (0, 0)

)
= δW

(
1

2
, (0, 0), (0, 0)

)
= δ

(
1

2
− c

)
<

1

2
− c

From Figure 1, we know there exists then a unique ρ∗(g, b) > 0 such
that an optimistic receiver is indifferent between investing and waiting. From
Corollary 1 follows that

E(Ui | si = b, ŝi = b) = δW(1 − p, (0, ρ∗(g, b))) > 0, ∀c <
1

2

13 For example, Zwiebel (1995, p. 16) wrote:

Relative performance evaluation also justify agents’ unwillingness to share

information, an issue that is problematic in many herding models.
14 See Gossner and Melissas (2003, Lemma 10) for a formal proof.
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If the pessimistic sender deviates and sends ŝi = g, all receivers, independent of
their types, invest at time one. As the sender does not receive any payoff-relevant
information, she will not invest and E(Ui | si = b, ŝi = g) = −ε. As

E(Ui | si = b, ŝi = b) > 0 > E(Ui | si = b, ŝi = g) whenever c <
1

2

a pessimist strictly prefers to reveal her unfavorable information. �

The intuition behind our pooling equilibrium (in which both sender’s types
send the message ŝi = g) is identical to the one we explained above. In words, a
separating equilibrium is fundamentally driven because: (i) both sender’s types
face different opportunity costs of waiting and (ii) sending a favorable message
creates an informational cascade. An optimist believes the investment project is
good. For her “time is money” and she is only willing to postpone her investment
plans (with probability one) if pessimists do not invest and if optimists invest with
a relatively high probability. Unfortunately these two aims cannot be simulta-
neously achieved by any of the two messages. Therefore, in the presence of an
ε-reputational cost, she strictly prefers to send ŝi = g. A pessimist believes the
investment project is bad. She is unwilling to invest unless she observes “rela-
tively many” optimists investing at time one. If the pessimist were to deviate and
send a favorable message, an informational cascade would occur, she wouldn’t
receive any payoff-relevant information, and she would get zero. Hence, it is the
informational cascade that ultimately induces a pessimist to send an unfavorable
message. If ρ∗(b, h1) would always be equal to zero (as is the case for low-surplus
projects), a pessimist would never want to send a negative message because—if
this message were to be believed—this would reduce ρ∗(g, h1).

Observe that Proposition 5 also stresses the importance of the informational
cascade to elicit private information. There only exist two MSPBEs. Thus, there
does not exist an MSPBE in which σ ∗(b, h0) < σ ∗(g, h0) and in which (ρ∗(b, g),
ρ∗(g, g)) �= (1, 1).

So far, we assumed that the sender always possesses private information. In
Gossner and Melissas (2003), we allowed for an uninformed sender, in the sense
that si ∈ {b, φ, g}. If si = φ, the sender’s signal is completely uninformative. We as-
sumed that Pr(si = φ | ·) = ε (where ε > 0 and ε → 0) and showed the existence of
a semiseparating equilibrium in which the pessimistic and the uninformed sender
send the same message (say, message ŝi = φ) and the optimistic one sends message
si = g. The intuition is similar to the one behind Proposition 5: The pessimistic
and the uninformed sender do not want to send the message ŝi = g, as this triggers
an informational cascade. The optimistic sender—independent of her message—
invests at time one and prefers to report truthfully for reputational reasons. Hence,
one should not interpret Proposition 5 as follows: “Informational cascades induce
all possible types of players to truthfully reveal their private information.” In-
stead, Proposition 5 should be interpreted as: “Informational cascades put an
upper limit above which some types of players don’t want to misrepresent their
information.”
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5. SOME NORMATIVE AND POSITIVE IMPLICATIONS

5.1. Should We Subsidize Investments? Denote by sub, an investment sub-
sidy granted to each period-one investor. Call c′ ≡ c − sub. A social planner
can, by appropriately choosing sub, alter the amount of learning in two differ-
ent ways. First, by making it relatively more attractive to invest at time one, she
can influence all players’ gain of waiting in a favorable way. Second, by setting
sub such that c′ ≤ 1/2 < c, she changes the sender’s incentives to truthfully re-
veal her private information (and thus the nature (separating vs. pooling) of the
equilibrium played in our game). In a full-fledged welfare study, one should com-
pute the value of sub that maximizes expected welfare. This exercise, however, is
lengthy and outside the scope of this article. Rather, in this subsection we assume
that sub ∈ [−ε, sub) and highlight some advantages and disadvantages of setting
sub �= 0. If sub = −ε (where, as above, ε represents an arbitrary small, but strictly
positive number) this means that the social planner taxes first-period investments.
Note that we only allow for a “low” subsidy15 in the sense that

sub < sub ≡ min{sub1, sub2}, where

sub1 ≡ δW(q̄, (0, 0), (0, 1)) − (q̄ − c) and

sub2 ≡ c + p − 1

If sub < sub1, this means that the most optimistic type in our model still faces
a positive option value of waiting. If sub < sub2, this means that 1 − p < c′. In
Gossner and Melissas (2003), we show that ∀sub ∈ [−ε, sub), Propositions 4 and
5 are unaffected by the introduction of a first-period subsidy, that is, if c′ > 1/2,
the unique MSPBE is the pooling one, if c′ ≤ 1/2, there exists a separating and a
pooling equilibrium.

We first analyze the case in which the first-period subsidy does not change
the nature of the played equilibrium. To illustrate our way of working, suppose
the investment project is a high surplus one and that players always focus on
the separating equilibrium. As mentioned above, in this equilibrium the mes-
sage of the sender reveals her type, and strategies of period one are given by:
after a good message, everyone invests in period 1, after a bad message, opti-
mistic receivers invest with probability ρ∗(g, b), and the remaining players do not
invest.

LEMMA 4. ∀ sub ∈ [0, sub), ρ∗(g, b) is strictly increasing in sub and ρ∗(g, b) <

1.

PROOF. See the appendix. The intuition behind Lemma 4 is straightforward. We
are considering a separating equilibrium. Thus, after the arrival of an unfavorable
message, optimistic receivers know they are the only players in the economy who

15 We consider an investment subsidy that may be paid to a potentially very large number of firms.

In comparison to the investment cost, it is then unlikely that the subsidy would be very important. We

do not have in mind a situation in which a government offers a generous subsidy to attract an important

investment project (e.g., the subsidy offered by the French Government to attract Eurodisney).
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face a positive gain of investing. If an optimistic receiver waits, she forfeits the
investment subsidy. Hence, the higher sub, the higher a player’s cost of waiting.
However, in equilibrium, the gain of waiting must equal the cost of waiting, and,
thus, the higher sub, the higher a player’s gain of waiting (and from Figure 1, we
know that this requires a higher ρ∗(g, b)).

Wel(g, sub, sep) (Wel(b, sub, sep)) denotes the expected payoffs (net of the
subsidies received) of the optimistic (pessimistic) players given the first-period
subsidy and given that all players focus on the separating equilibrium. For the
optimistic players, one has

Wel(g, sub, sep) = N
2

(p − c + sub) −
(

1

2
2p(1 − p)(N − 1)ρ∗(g, b)

+ 1

2
[(p2 + (1 − p)2)(N − 1) + 1]

)
sub

The first term is given by the expected number of optimists multiplied by their
expected utilities. The second is the expected number of optimistic players who
invest in period one16 times the subsidy that is paid to them. This last expression
simplifies to

Wel(g, sub, sep) = N
2

(p − c) + (N − 1)p(1 − p)(1 − ρ∗(g, b))sub(6)

Observe that the second term is strictly positive whenever sub > 0. This finding
implies that, from a welfare point of view, a strictly positive subsidy is better
(insofar as the optimistic players are concerned) than no subsidy at all. From
Lemma 4, we know that (1 − ρ∗(g, b))sub (and thus also Wel(g, sub, sep)) need not
be monotonic in sub. This is intuitive: An increase in sub increases an optimist’s
gain of waiting, but also reduces the probability that an optimist will wait and
effectively benefit from a more informative signal. For pessimists, one has

Wel(b, sub, sep) = (N − 1)p(1 − p)

(
1

2
− c

)
+ 1

2

[
(p2 + (1 − p)2)(N − 1)δW(Pr(G | b, si = b), (0, 1),

(0, ρ∗(g, b))) + δW(1 − p, (0, ρ∗(g, b)))
]

(7)

The first term corresponds to the expected welfare for pessimistic receivers given
an optimistic sender. Similarly, the first term between square brackets corresponds
to the expected welfare of all pessimistic receivers given a pessimistic sender.
The second term between square brackets corresponds to the expected utility of

16 With probability 1/2, the sender is pessimistic, in which case 2p(1 − p)(N − 1) optimistic receivers

invest at time one with probability ρ∗(g, b); with probability 1/2, the sender is optimistic, in which case

(p2 + (1 − p)2)(N − 1) + 1 optimistic players (= conditional expected number of optimistic receivers

plus the optimistic sender) invest at time one with probability one.
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the pessimistic sender. From Lemmas 2 and 4 and Corollary 1, it follows that
Wel(b, sub, sep) cannot decrease in sub. This is also intuitive: The higher sub, the
higher ρ∗(g, b), and, as explained in Section 3, this cannot decrease the expected
utilities of the pessimistic players. Total social welfare equals

Wel(sub, sep) = Wel(g, sub, sep) + Wel(b, sub, sep)

Suppose now that all players, independently of the surplus generated by the
project, focus on the pooling equilibrium. From above, we know that both senders’
types then send the message ŝi = g, that optimists invest with probability ρ∗(g, g),
and that pessimists do not invest. Note that receiving the message ŝi = g in the
pooling equilibrium is informationally different from receiving the same message
in the separating one (and, more importantly, leads to a different behavior in the
continuation game). To avoid confusion, in this subsection we denote by ρ∗(g,
h1) (respectively, ρ∗(g, g)), the probability with which all optimists invest at time
one in the pooling (respectively, separating) equilibrium after having received
a favorable message. Here again, we estimate the social welfare separately for
optimists and for pessimists (total welfare is denoted by Wel(sub, pool)). For
optimists, this writes:

Wel(g, sub, pool) = N
2

(p − c) + N
2

(
1 − ρ∗(g, h1)

)
sub(8)

For pessimists, we have:

Wel(b, sub, pool) = N
2

δW
(
1 − p, (0, ρ∗(g, h1))

)
(9)

LEMMA 5. ∀ sub ∈ [0, sub), ρ∗(g, h1) is strictly increasing in sub and ρ∗(g, h1) <

1.

PROOF. See the appendix. The intuition is similar to the one behind Lemma 4.
As above, Wel(g, sub, pool) need not be monotonic in sub, whereas Wel(b, sub,
pool) cannot decrease in sub. Our main result is summarized below.

PROPOSITION 6. If the subsidy does not alter the nature of the played equilib-
rium, any sub ∈ (0, sub) is (strictly) better (for welfare) than no subsidy at all. The
relationship between welfare and sub need, however, not be monotonic.

Proposition 6 is not very surprising: Because of the information externality the
social benefit of investing at time one exceeds the private one. Hence, a social
planner fixes sub > 0 to close the gap between both benefits. A similar result is
also present in Doyle (2002). However, it would be premature to conclude that—in
the presence of information externalities—investments must always be subsidized
as the example below suggests.

Suppose c = 1/2 and that our players focus on the separating equilibrium. We
now show that the social planner can increase welfare by imposing an arbitrarily
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small, but strictly positive, investment tax (i.e., sub = −ε). We first compute
Wel(0, sep). Observe that in the separating equilibrium Pr(G | s j = g, ŝi =
b) = 1/2 = c, and thus there exists a PBE in which ρ∗(g, b) = 0. Hence,
from Equation (6) follows that

Wel(g, 0, sep) = N
2

(p − c)(10)

As ρ∗(g, b) = 0,

δW(Pr(G | b, si = b), (0, 1), (0, 0)) = δW(1 − p, (0, 0)) = 0

and from Equation (7) we know that

Wel(b, 0, sep) = (N − 1)p(1 − p)

(
1

2
− c

)
= 0(11)

Adding (10) and (11), one has

Wel(0, sep) = N
2

(p − c).(12)

This is intuitive: If ŝi = g, pessimists invest at time one and get a zero payoff. If
ŝi = b, ρ∗(g, b) = 0 and our pessimistic players also get a zero payoff. Hence, if
c = 1/2, total welfare is only determined by the expected utilities of the opti-
mistic players. If ŝi = g, all optimists invest at time one. If ŝi = b, optimistic re-
ceivers do not invest, but nonetheless obtain the same payoff (i.e., zero) as the
one they would obtain if they were to invest at time one. Stated differently, un-
conditionally investing at time one is—for an optimist—payoff equivalent to the
alternative strategy in which she only invests if ŝi = g. Thus, an optimist gets p −
c and, in expected terms, half of the population is optimistic. Thus, welfare equals
N/2(p − c).

If sub = − ε, c′ > 1/2 and the unique MSPBE is the pooling one. As ε → 0,

Wel(g, −ε, pool) → N
2

(p − c) and Wel(b, −ε, pool) = δW(1 − p, (0, ρ∗(g, h1)))

As ρ∗(g, h1) > ρ∗(g, b) = 0, pessimists benefit from a more informative statistic
in the pooling equilibrium and thus Wel(0, sep) < Wel(−ε, pool). Our main insight
is summarized below.

PROPOSITION 7. An investment tax can—by altering the nature of the played
equilibrium—(strictly) increase welfare.

In the analysis above, we restricted ourselves to the case in which c =1/2. However,
it should be clear that Proposition 7 is crucially driven by the fact that when c is
close to 1/2 (and c ≤ 1/2), the expected utility of a pessimist hardly exceeds zero in
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the separating equilibrium. In our introduction, we explained why our last insight
is not present in Doyle (2002).

5.2. How Does the Sender’s Ability Influence Her Incentives for Truthful Rev-
elation? So far, we assumed that the sender was “as able” as the receivers in
the sense that all players possess a signal of the same precision. One may find
it more natural to endow player i with a more precise signal. After all, in our
model, she can be interpreted as a guru and people typically think of them as
being better informed. There is a straightforward way to allow for a better in-
formed sender. Let us assume that player i’s signal is drawn from the distribution:
Pr(g | G) = Pr(b | B) = r and Pr(b | G) = Pr(g | B) = 1 − r (where 1 > r > p). The
higher r, the “smarter” or the better informed the sender. Our main result is
summarized below.

PROPOSITION 8. ∀c ∈ (1 − p, min{p,
(1 − p)r

(1 − p)r + p(1 − r)
}), ∃ a separating equilibrium.

This range of parameter values cannot decrease in the precision of the sender’s signal.

PROOF. An MSCE in which ρ̃(b, g) = ρ̃(g, g) = 1 exists only if Pr(G | b, ŝi =
g) ≥ c. This posterior probability is now computed as:

Pr(G | b, ŝi = g) = Pr(G, ŝi = g | b)

Pr(ŝi = g | b)
= (1 − p)r

(1 − p)r + p(1 − r)
>

1

2

Using a reasoning identical to the one we outlined above, one can check that if

c ∈ (1 − p,
(1−p)r

(1−p)r+p(1−r)
), there exists a separating equilibrium. �

The intuition behind Proposition 8 is simple. As we showed in Proposition 5, a
separating equilibrium only exists if the sender can make the pessimists change
their minds. Proposition 8 therefore rests on the intuitive idea that the “smarter”
the sender (or the more precise her private information), the “easier” it will be for
her to make the pessimists change their minds. If the sender cannot convince the
remaining pessimists to invest at time one (either because the sender is commonly
perceived to be “stupid” or because the investment project only generates a low
surplus), then she does not want to reveal any unfavorable information because
this will worsen her second-period inference problem.

6. CONCLUSIONS

In this article, we introduced cheap talk in an investment model with information
externalities. We first showed that for low-surplus projects, the unique MSPBE
is the pooling one. This is because a pessimist is reluctant to divulge her bad
information as this worsens her second-period inference problem. For high-surplus
projects, however, there exists a separating equilibrium: As a pessimist does not
learn anything upon observing an informational cascade (which occurs whenever
the sender sends a favorable message) revelation of bad information is compatible
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with maximizing behavior. A subsidy on low-surplus projects increases welfare,
provided the subsidy does not turn a low-surplus project into a high-surplus one.
Without an adequate equilibrium selection theory, one cannot appraise the welfare
consequences of a policy aimed at subsidizing high-surplus projects. Finally, we
argued that “smart” people have more incentives to truthfully reveal their private
information than “stupid” ones.

The reader must bear in mind that we only introduced cheap talk in an
endogenous-queue setup. More research is thus needed to check the robustness of
exogenous-queue herding models to the introduction of cheap talk. In our model,
one should think about the sender as a famous investor who is being interviewed
by the media. We believe it would be equally interesting to consider a setup in
which many players have access to the communication channel through words.
In particular, we have two interpretations in mind. First, one could model “the
economics of opinion polls” in which a subset of the population is asked to si-
multaneously send a message to all players in the economy.17 Second, one could
model “the economics of business lunches” in which a subset of the population
meet and discuss the investment climate prior to the first investment date (the
outcome of the discussion is not divulged to the other players in the economy).
We also believe this to constitute an interesting topic for future research.

APPENDIX

PROOF OF PROPOSITION 4. As we consider here low-surplus investment projects,
c > 1/2. From Proposition 2 we know that

E(Ui | si = g, ŝi = b) = p − c − ε < E(Ui | si = g, ŝi = g) = max{p − c, δW(·)}

Thus, σ ∗(g, h0) = 1. In the article we already proved that there does not ex-
ist an MSPBE in which 0 ≤ σ ∗(b, h0) < 1. We now show the existence of an
MSPBE in which σ ∗(b, h0) = σ ∗(g, h0) = 1. If the pessimistic sender deviates
and sends ŝi = b, then we assume that receivers believe with probability one that
the sender is a pessimist. Hence, Pr(G | g, b) = 1/2 < c, and E(Ui | si = b, ŝi =
b) = 0. If ŝi = g, Pr(G | g, g) = Pr(G | g) (i.e., the posterior of the optimistic re-
ceivers is equal to the one of the optimistic sender). As explained in our arti-
cle, we thus impose the restriction that ρ∗(g, g) = σ ∗(g, g). Observe also that
Pr(G | b, g) = Pr(G | b) = 1 − p < c. Thus, ρ∗(b, g) = σ ∗(b, g) = 0. Suppose play-
ers j and i are both optimists. As the sender’s message is completely uninforma-
tive, Pr(si = g | s j = g) = Pr(s j = g | si = g). Hence, if player i observes player j
investing (waiting), this is informationally equivalent to player j observing player
i investing (waiting). Formally, this insight implies that

δW(p, (0, ρ(g, g))) = δW(p, (0, ρ(g, g)), (0, ρ(g, g)))

17 In contrast to Sgroi (2002), we have in mind a situation in which the sender wants to learn the

receivers’ private information.
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If ρ(g, g) = σ (g, g) = 0,

p − c > δW(p, (0, 0)) = δW(p, (0, 0), (0, 0)) = δ(p − c)

If ρ(g, g) = σ (g, g) = 1, from Corollary 3 we know that

p − c < δW(p, (0, 0), (0, 1)) ≤ δW(p, (0, 1), (0, 1)) = δW(p, (0, 1))

where the second inequality follows from the fact that a receiver’s gain of waiting
cannot decrease when the sender adopts a more informative time-one strategy.18

It then follows from Corollary 1 that there exists a unique ρ∗(g, g) > 0 such that

p − c = δW(p, (0, ρ∗(g, g))) = δW(p, (0, ρ∗(g, g)), (0, ρ∗(g, g)))

As ρ∗(g, g) > 0, it follows from Corollary 1 that

E(Ui | si = b, ŝi = b) = 0 < δW(1 − p, (0, ρ∗(g, g))) = E(Ui | b, g) + ε

As ε → 0, a pessimistic sender strictly prefers to send ŝi = g instead of
ŝi = b. �

Define �r (q, σ 1, ρ1) ≡ δW(q, σ 1, ρ1) − (q − c) as the difference between player
j’s gain of waiting and her gain of investing. The lemma below, whose proof can
be found in Gossner and Melissas (2003), will often be used in our next proofs.

LEMMA 6. �r ( 1
2
, σ1, ρ1) and �r (q̄, σ1, ρ1) are independent of σ 1.

The lemma is not unintuitive: As q = 1/2 or q = q̄, this means that receivers
learned si through ŝi . Hence, receivers do not expect to learn anything (about the
sender’s type) through her period-one action. Hence, receivers do not care about
the sender’s time-one strategy.

PROOF OF PROPOSITION 5. We first prove the nonexistence of an MSPBE in which
σ ∗(b, h0) < σ ∗(g, h0). Next, we prove the existence of a pooling equilibrium. The
existence of a separating equilibrium is proven in the article.

From the proof of Proposition 4, we know that σ ∗(g, h0) = 1. Suppose there
exists an MSPBE in which 0 < σ ∗(b, h0) < σ ∗(g, h0) = 1. σ ∗(b, h0) can only be
∈ (0, 1) if E(Ui | si = b, ŝi = b) = E(Ui | si = b, ŝi = g). If the pessimistic sender
sends ŝi = b,

Pr(G | b, b) < 1 − p < c ≤ 1

2
= Pr(G | g, b) < p

In our companion paper, we have proven that the continuation game is then
characterized by a unique MSCE in which ρ∗(g, b) ∈ [0, 1) and σ ∗(g, b) = 1 (i.e.,

18 See Gossner and Melissas (2003, Lemma 5) for a formal proof.
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if the optimistic sender deviates and sends ŝi = b, it is optimal for her to invest at
time one). If she sends ŝi = g, there are two possibilities: (a) 1 − p < Pr(G | b, g) <

c < p < Pr(G | g, g) and (b) 1 − p < c ≤ Pr(G | b, g) < p < Pr(G | g, g).
In case (a), in our companion paper we have proven that the continuation game

is then characterized by a unique MSCE in which ρ∗(b, g) = 0 and ρ∗(g, g) ∈ (0,
1). Hence,

E(Ui | si = b, ŝi = b) = δW(1 − p, (0, ρ∗(g, b))) and

E(Ui | si = b, ŝi = g) = δW(1 − p, (0, ρ∗(g, g))) − ε

We now prove that ρ∗(g, g) > ρ∗(g, b). If ρ∗(g, b) = 0, it trivially follows that ρ∗(g,
g) > ρ∗(g, b). Therefore, suppose that ρ∗(g, b) > 0. In that case, ρ∗(g, b) and ρ∗(g,
g) were “generated” by the following two equalities:

�r (Pr(G | g, b), (0, 1), (0, ρ∗(g, b)) = 0

�r (Pr(G | g, g), (0, 0), (0, ρ∗(g, g)) = 0

(A.1)

As Pr(G | g, b) = 1/2, from Lemma 6, we know that

�r (Pr(G | g, b), (0, 1), (0, ρ∗(g, b)) = �r (Pr(G | g, b), (0, 0), (0, ρ∗(g, b))

As Pr(G | g, b) < Pr(g, g), from Lemma 3 we know that

�r (Pr(G | g, g), (0, 0), (0, ρ∗(g, b)) < �r (Pr(G | g, b), (0, 0), (0, ρ∗(g, b)) = 0

Hence, for equality (A.1) to be respected it follows from Lemma 2 that
ρ∗(g, g) > ρ∗(g, b). But then it follows from Corollary 1 that δW(1 − p, (0,
ρ∗(g, g))) > δW(1 − p, (0, ρ∗(g, b))). As ε → 0, it follows that in case (a)
E(Ui | si = b, ŝi = b) < E(Ui | si = b, ŝi = g), a contradiction.

In our companion paper, we have shown that in case (b) there exists an MSCE
in which ρ∗(b, g) = σ ∗(g, g) = 0 and ρ∗(g, g) ∈ (0, 1). Depending on the val-
ues of the exogenous parameters, there may also exist another MSCE in which
σ ∗(b, g) = 0 and σ ∗(g, g) = ρ∗(b, g) = ρ∗(g, g) = 1. If players focus on the contin-
uation equilibrium in which ρ∗(b, g) = 0 and ρ∗(g, g) ∈ (0, 1), using a reasoning
identical to the one of the paragraph above, we know that the pessimistic sender
cannot be indifferent between the two messages. Therefore, suppose players focus
on the continuation equilibrium in which ρ∗(b, g) = ρ∗(g, g) = 1 (provided this
continuation equilibrium exists). In that case,

E(Ui | si = b, ŝi = b) = δW(1 − p, (0, ρ∗(g, b))) and

E(Ui | si = b, ŝi = g) = −ε

As δW(1 − p, (0, ρ∗(g, b))) ≥ 0 > −ε, in case (b) the sender cannot be indifferent
between the two messages.
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We now prove the existence of a pooling equilibrium. Suppose receivers update
their posteriors under the assumption that σ ∗(b, h0) = σ ∗(g, h0) = 1. In the out-of-
equilibrium event that ŝi = b, we assume that receivers believe that the sender is a
pessimist (with probability one). In our companion paper, we have shown that the
continuation game is then characterized by a unique MSCE in which σ ∗(b, b) =
ρ∗(b, b) = 0, ρ∗(g, b) ∈ [0, 1), and σ ∗(g, b) = 1. Therefore,

E(Ui | si = b, ŝi = b) = δW(1 − p, (0, ρ∗(g, b)))

If she sends ŝi = g, Pr(G | b, g) = 1 − p < c < Pr(G | g, g) = p, and from the
Proof of Proposition 4, we know that ρ∗(b, g) = 0 and ρ∗(g, g) ∈ (0, 1). We
now show that ρ∗(g, g) > ρ∗(g, b). If ρ∗(g, b) = 0, it trivially follows that
ρ∗(g, g) > ρ∗(g, b). Therefore, supppose that ρ∗(g, b) > 0. In that case, both
probabilities are “generated” out of the following two equalities:

�r
(

1

2
, (0, 1), (0, ρ∗(g, b))

)
= 0

�r (p, (0, ρ∗(g, g)), (0, ρ∗(g, g)) = 0

(A.2)

Succesively applying Lemmas 3 and 6 one has

0 = �r (p, (0, ρ∗(g, g)), (0, ρ∗(g, g)) < �r
(

1

2
, (0, ρ∗(g, g)), (0, ρ∗(g, g))

)
= �r

(
1

2
, (0, 1), (0, ρ∗(g, g))

)

Hence, for equality (A.2) to be respected it follows from Lemma 2 that ρ∗(g, b) <

ρ∗(g, g). From Corollary 1 (plus the fact that ε → 0) follows that the pessimistic
sender strictly prefers to “lie” and send ŝi = g. �

PROOF OF LEMMA 4. Define ρ∗(g, b, sub) as the probability that ensures the
following equality

1

2
− c + sub = δW

(
1

2
, (0, 1), (0, ρ∗(g, b, sub))

)

By assumption,

sub < �r (Pr(G | g, si = g), (0, 0), (0, 1))(A.3)

We now show that ∀ sub ∈ [0, sub), ρ∗(g, b, sub) < 1. ρ∗(g, b, sub) = 1 only if

sub ≥ �r
(

1

2
, (0, 1), (0, 1)

)
(A.4)
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Inequalities A.3 and A.4 cannot both be satisfied as we can use Lemmas 3 and 6
to construct the following contradiction

sub ≥ �r
(

1

2
, (0, 1), (0, 1)

)
> �r (Pr(G | g, si = g), (0, 1), (0, 1))

= �r (Pr(G | g, si = g), (0, 0), (0, 1)) > sub

As ρ∗(g, b, sub) < 1, it follows from Lemma 2 that ρ∗(g, b, sub) is strictly increasing
in sub. �

PROOF OF LEMMA 5. The proof is similar to the one of Lemma 4. Define ρ∗(g,
h1, sub) as the probability that ensures the following equality

sub = �r (p, (0, ρ∗(g, h1, sub)), (0, ρ∗(g, h1, sub)))

∀ sub ∈ [0, sub), ρ∗(g, h1, sub) < 1 as we otherwise run into the following
contradiction

sub ≥ �r (p, (0, 1), (0, 1)) > �r (Pr(G | g, si = g), (0, 1), (0, 1))

= �r (Pr(G | g, si = g), (0, 0), (0, 1)) > sub

As ρ∗(g, h1, sub) is always strictly lower than one, it follows from Lemma 2 that
ρ∗(g, h1, sub) is strictly increasing in sub. �
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