
The Folk Theorem for Finitely Repeated Games
with Mixed Strategies

Olivier Gossner

February 1994

Revised Version

Abstract
This paper proves a Folk Theorem for finitely repeated games with mixed strategies.
To obtain this result, we first show a similar property for finitely repeated games
with terminal payoffs.

I wish to thank J. Abdou, who introduced me to this field of research, and S. Sorin
for his constant help, support and fruitful discussions. My special thanks go to Amrita
Dhillon and Denis Gromb for very helpful discussions.

Olivier Gossner, L. S. T. A. , Université Paris 6,
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1 Introduction

The perfect Folk Theorem (Aumann and Shapley [1], Rubinstein [10]) states that

any payoff that is feasible and better than the minimax payoff for any player in

a one-shot game is a subgame perfect equilibrium payoff of the corresponding in-

finitely repeated game with standard signaling and without discounting. Since

then, results have been proved for different structures of repeated games: mainly

discounted or finitely repeated games. But one should also distinguish results that

rely on the assumption that players use only pure strategies, and results that allow

them to use mixed strategies. We will refer to the former ones as Folk Theorems

in pure strategies, as opposed to Folk Theorems in mixed strategies.

In a one-shot game, the difference between pure and mixed strategies relies

essentially on the structure of the strategy spaces (convex in one case but usually

not in the other). In a repeated game, the signaling structures are radically different

in both models. If we assume that the mixed actions of the players are revealed after

each round, we are basically in a model with an extended set of pure strategies. On

the other hand, with mixed strategies, only the action corresponding to a realization

of their mixed moves is announced. In this case, it is therefore impossible to force

some player to use a mixed move by threatening him with a punishment if he

disobeys. Since most proofs of Folk Theorems rely on some similar arguments of

threat and reward, proofs of Folk Theorems in pure strategies don’t easily extend

to mixed strategies.

The Folk Theorem by Aumann and Shapley [1], Rubinstein [10] holds both in

pure and in mixed strategies. Fudenberg and Maskin [4] and [5] show that both a

Folk Theorem in pure strategies and a Folk Theorem in mixed strategies hold for

discounted infinitely repeated games (see also Neyman [9] and Sorin [12]). Benoit
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and Krishna [2] obtain a Folk Theorem in pure strategies for finitely repeated games

under some assumptions on the one-shot game, and exhibit some finitely repeated

games for which it fails. Overlapping generations games –OLGs hereafter–, inspired

by Samuelson’s economic model, form another important class of games. Kandori

[7], and Smith [11] in a more general case, proved a Folk Theorem in pure strategies

for OLGs. For the study of OLGs, Kandori introduced finitely repeated games with

terminal payoffs which are interesting from a technical point of view. These are

finitely repeated games in which players receive an additional payoff which depends

on the history of the game.

The scope of this paper is to extend the Folk Theorem for finitely repeated

games from pure strategies to mixed strategies. To do this, we first prove a Folk

Theorem in mixed strategies for finitely repeated games for terminal payoffs. In

section 2, we recall the models of finitely repeated games and finitely repeated

games with terminal payoffs. We also review the results of Benoit and Krishna

[2] and Kandori [7] for these games. The Folk Theorem in mixed strategies for

finitely repeated games with terminal payoffs is presented in section 3. In section

4, we show how the terminal payoffs can be constructed as equilibrium payoffs of

a subgame of the repeated game. Using this, we finally prove that a Folk Theorem

in mixed strategies holds for finitely repeated games.

2 The models

2.1 The one-shot game

Let G be an I-player normal form game, the set of players being represented by

I = {1, . . . , I}, with payoff function g :
∏

i A
i → IRI . Ai is player i’s set of pure

strategies and is finite, and gi(a) (the i-th component of g(a)) is his payoff when
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the action profile is a.

Players may use mixed strategies, and the simplex ∆(Ai) = Si represents the

set of mixed strategies for player i. g :
∏

i S
i → IRI will also denote the canonical

extension of g, thus g(s1, . . . , sI) is the expected payoff when each player i uses the

mixed strategy si.

We will use the notations A =
∏

i A
i, A−i =

∏
j 6=i A

j, and similarly for S, S−i.

For every player i, we select a minimax in mixed strategies against player i for

players other than i, m−i
i ∈ S−i, and a best response mi

i against m−i
i , so that

mi = (m−i
i , mi

i) ∈ S.

Without loss of generality, we normalize the payoffs so that for every i, gi(mi) =

0. Let the convex hull of the set of feasible payoffs be F = co {g(a), a ∈ A}.

V = F ∩ IRI
+ is the (closed) set of payoffs that are individually rational in mixed

strategies and feasible. C = ‖G‖ = maxi,a |gi(a)| is the norm of G. For X ∈ IRI

and ρ ∈ IR+, we will denote by B(X, ρ) the closed ball with center X and radius ρ.

G being fixed, G∗ represents the I-player normal form game in which players’

pure strategy sets are Si, with payoff function g. In G∗, players use only pure

strategies, that are the original mixed strategies of G.

2.2 Finitely repeated games

Given a game G as above, the finitely repeated game G(T ) is defined as the game

G being repeated T times, where players are observing at each stage the action

profiles of G. A history at stage t ∈ {1, . . . , T} is an element of Ht, where Ht is the

set of t-tuples of elements of A if t > 0, and H0 = {∅} for convenience. A strategy

of player i is a sequence σi = (σi
t)1≤t≤T of mappings σi

t : Ht−1 → Si. If the history

at stage T is (a1, . . . , aT ) the (average) payoff vector in G(T ) is:
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gT (a1, . . . , aT ) =
1

T

T∑
t=1

g(at)

An I-tuple of strategies σ = (σ1, . . . , σI) induces a probability distribution on

the set of histories at stage T , and hence on the payoff vectors. Recall that σ

is a Nash equilibrium of G(T ) if for every player i, the strategy σi maximizes his

expected payoff in G(T ) given other players’ strategies. Also σ is a subgame perfect

equilibrium of G(T ) when for all h ∈ Ht, σh is a Nash equilibrium of G(T − t),

where σh(h
′) is σ applied to the history h followed by h′. Let E(T ) denote the set

of (average expected) subgame perfect equilibrium payoffs of G(T ).

G∗(T ) represents the game G∗ repeated T times. In this game a history at time

t > 0 is a sequence of t elements of S. The set of subgame perfect equilibrium

payoffs of G∗(T ) will be denoted by E∗(T ).

Note that since every player must get at least his minimax payoff in any equi-

librium, E(T ) and E∗(T ) are subsets of IRI
+. It is obvious that E(T ) and E∗(T ) are

also subsets of F , therefore E(T ) ⊂ V and E∗(T ) ⊂ V . Two Folk Theorems, one

proved by Benoit and Krishna [2], and the other which is the scope of this paper,

give general conditions under which the converse inclusions are also true when T

goes to infinity.

The following result deals with the case of pure strategies:

Theorem 1 (Benoit and Krishna, 1985) Consider G∗(T ) and assume that:

(i) For every player i, there exists two Nash equilibria ei and f i of G such that

gi(ei) > gi(f i)

(ii) dim F = I

then

∀ε > 0, ∃T̄ ∈ IN, ∀T ≥ T̄ , ∀v ∈ V, B(v, ε) ∩ E∗(T ) 6= ∅
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Another way to state this Theorem is to say that, under assumptions (i) and

(ii), the limit for the Hausdorff topology of the set of equilibrium payoffs of G∗(T )

as T tends to infinity is the whole space V .

The scope of this paper is to prove that Theorem 1 can be extended to the case

where the players use mixed strategies.

Theorem A (Main Theorem) Assume (i) and (ii), then:

∀ε > 0, ∃T̄ ∈ IN, ∀T > T̄ , ∀v ∈ V, B(v, ε) ∩ E(T ) 6= ∅

2.3 Finitely repeated games with terminal payoffs

Let W be a nonempty subset of IRI and ω a function from HT to W . The finitely

repeated game with terminal payoffs G(T,W , ω) is defined as being the game G

repeated T times in which players receive an additional payoff at the end of the T

stages. This terminal payoff is given by ω applied to the history at stage T . W is

called the terminal payoffs set and ω is the terminal payoffs function. If the history

is (a1, . . . , aT ) at stage T , the (average) payoff vector in G(T,W , ω) is:

gT,W,ω(a1, . . . , aT ) =
1

T

T∑
t=1

g(at) +
1

T
ω(a1, . . . , aT )

The set E(T,W , ω) of subgame perfect equilibrium payoffs of G(T,W , ω) is

defined in the usual sense. Since our terminal payoffs function ω will vary, we are

interrested in the study of E(T,W) = ∪wE(T,W , ω), that we call by extension the

set of subgame perfect equilibrium payoffs of G(T,W). A history hT will be called

an equilibrium path of G(T,W) if it is an equilibrium path of G(T,W , ω) for some

ω.

When the one-shot game is G∗, we also define the finitely repeated game with

terminal payoffs G∗(T,W , ω∗) (ω is a function from H∗
T to W) and the sets of
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equilibrium payoffs E∗(T,W , ω) and E∗(T,W) = ∪wE(T,W , ω).

We present here a version of Kandori’s Folk Theorem [7] for finitely repeated

games with terminal payoffs played in pure strategies.

Theorem 2 (Kandori, 1992) If F ∩ IRI
++ is non empty, for any ε > 0, there

exists a finite set W ⊂ IRI and T0 ∈ IN such that:

∀T > T0, ∀v ∈ V, B(v, ε) ∩ E∗(T,W) 6= ∅

In the next section, we extend this result to mixed strategies, and use some

particular spaces of terminal payoffs.

3 A Folk Theorem for finitely repeated games

with terminal payoffs

In this section, we prove a “robust” Folk Theorem for finitely repeated games with

terminal payoffs with mixed strategies, where in fact, the points in the terminal

payoffs set may vary up to some ρ without affecting the results.

3.1 Statement of the result

We denote by REW (like rewards) the subset {0, 1}I ∪ {(−1,−1, . . . ,−1)} of IRI .

For (W, ρ) ∈ IR2
+, ΘW,ρ is the correspondence from REW to IRI with compact values

defined by ΘW,ρ(r) = B(Wr, ρ). A selection θ of ΘW,ρ picks for every r ∈ REW a

point θ(r) in the ball ΘW,ρ(r).

Theorem B If F ∩ IRI
++ is non empty,

∀ρ ≥ 0, ∀ε > 0, ∃W0 ∈ IR, ∃T0 ∈ IN,

∀T ≥ T0, ∀W ≥ W0, ∀v ∈ V, and for every selection θ of ΘW,ρ

B(v, ε) ∩ E(T, θ(REW)) 6= ∅
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Note that in Theorem B, as in Theorem 2, the set of terminal payoffs does not

depend on T . The game can be repeated as long as we want without increasing the

size of the terminal payoffs set.

As a Corollary we get an equivalent to Theorem 2 in mixed strategies:

Corollary 1 If F ∩ IRI
++ is non empty, for every ε > 0, there exits a finite subset

W of IRI and T0 in IN such that for every T ≥ T0 and every v in V :

B(v, ε) ∩ E(T,W) 6= ∅

We will first prove Theorem B for a fixed v ∈ V . Since F ∩ IRI
++ is non empty

and convex, v can be approximated by payoffs that are in F ∩ IRI
++. With the

notation g(lA) = 1
l
{∑l

1 g(ak), (a1, . . . , al) ∈ Hl}, l ∈ IN , the set ∪lg(lA) is dense

in F and IRI
++ is open, thus ∪lg(lA) ∩ IRI

++ is dense in F ∩ IRI
++. Therefore to

prove the theorem for v, it is enough to prove that for every sequence of action

profiles ã = (a1, a2, . . . , al) ∈ Hl such that 1
l

∑l
k=1 g(ak) � 0, the path consisting

of repeated cycles of this sequence is an equilibrium path of G(T, θ(REW)) for any

selection θ of ΘW,ρ, when W and T are big enough.

For a such sequence and a given selection, we will now construct equilibrium

strategies having the following properties:

• Players conform with the path above when the history is consistent with it.

• If player i deviates “long enough” before the end of the game, other players

will punish him, i.e. they will use for some number P of stages a strategy

near m−i
i ; that is what we will refer to as a punishing period.

• The players who effectively punish (effective punishers) will receive a reward

as terminal payoff.
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• If any player deviates in the last stages of the game, the terminal payoff will

be bad for every player.

The elements of θ({0, 1}I) are payoffs that will reward players who were effective

punishers. θ(−1, . . . ,−1) is a collective punishment to prevent from “late” devia-

tions.

The major difficulty one encounters when dealing with mixed strategies is to

determine whether a player is an effective punisher or not. This will depend on

the observation of action profiles issued during the punishing period, and thus we

introduce the “test functions” αi,j
η as below.

3.2 The test functions

Suppose that after some period of the game, we want to check if players have used

some mixed strategies “near” a fixed strategy in s ∈ S. The history during the

considered period gives us some probability distribution on the action profiles, and

one could simply compare this distribution with the distribution induced by s on

A. Here we want to determine what players j have used the mixed strategy sj,

therefore we introduce a different test for each player by the following way:

For a history of the game during some period be expressed as a t-tuple h =

(ht0+1, . . . , ht0+t) ∈ Ht, let n(a) be the number of occurrences of a ∈ A. Also

n(a−j) is the number of times that players others than j issued the action a−j ∈ A−j,

n(a−j) =
∑

bj∈Aj n(a−j, bj). A distance between player j’s observed strategy during

some history h and the repetition of sj is defined by:

Dj(h, sj) =
1

t

∑
a∈A

|n(a)− n(a−j)P(sj = aj)|

where P(sj = aj) represents the probability for player j to issue the action aj while
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using the strategy sj.

After a punishing period, we want to compare each player’s strategy and a

minimax strategy, so when the history during a punishing period against player i

is h ∈ HP , some test functions are given for η > 0 by:

αi,j
η =

∣∣∣∣∣ 1 if Dj(h,mj
i ) < η

0 otherwise

An effective punisher j against i will be a punisher so that αi,j
η = 1. The two

following lemmata show that if P is large enough, and η small enough, when all

punishers are effective the deviator receives an average payoff which is less than the

payoff in the normal path. Conversely, players who play the minimax strategy are

usually effective punishers.

Lemma 3.1 For every ε > 0, and η > 0, there exists P0 in IN such that if P ≥ P0,

if any player j 6= i uses the strategy mj
i during P stages where the history is h ∈ HP ,

the probability that αi,j
η (h) = 0 is less than ε whatever are the strategies used by

players other than j.

Proof:

This proof uses the approachability theory, cf Blackwell [3], or Mertens, Sorin and

Zamir [8].

For any player j fixed, we consider the game G̃ with two players I and II,

strategy sets Aj for player I and A−j for player II, and vector payoff g̃(a) in IRA

with 1 in its component indexed by a and 0 elsewhere. For h = (h1, h2, . . . , ht) ∈ Ht,

x̄t = x̄t(h) = 1
t

∑t
k=1 g̃(hk). x̄t,a is the component of x̄t indexed by a. Note that:

Dj(h, sj) =
∑
a∈A

|x̄t,a −
∑

bj∈Aj

x̄t,(a−j ,bj)P(sj = aj)|
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Thus we can write Dj as a function from [0, 1]A×Sj to IR defined by the above

formula, that we will still denote by Dj.

When player I uses the strategy mj
i , the convex hull R(mj

i ) of the set of points

{g̃(s−j, mj
i ), s

−j ∈ A−j} is equal to the set of all x̄ ∈ [0, 1]A such that Dj(x̄, mj
i ) = 0.

The approachability theory tells us that this set is approachable for I by using the

constant strategy mj
i . This means that for all ε1 > 0, there exists an integer P0

such that for every strategy of player II, the probability P(supt≥P0
δt ≤ ε1) is greater

than 1− ε1, where δt is the distance between x̄t and R(mj
i ).

In particular, since the function Dj( . , mj
i ) is continuous, for ε1 sufficiently

small, the probability that Dj(x̄t, m
j
i ) ≥ η is smaller than ε.

Lemma 3.2 For every ε > 0, there exists η > 0 such that for every i, and every

ht = (h1, h2, . . . , ht) ∈ Ht if for j 6= i αi,j
η (h) = 1 then:

1

t

t∑
k=1

gi(hk) < ε

Proof:

First we reorder the players such that the player to be punished is called player

I. Consider an history h = (h1, h2, . . . , ht) and η > 0 such that for all j 6= I,

αI,j
η (h) = 1. Then for every a ∈ A and every j 6= I:

1

t
|n(a)− n(a−j)P(mj

I = aj)| < η

In particular for every a = (a1, a2, . . . , aI) ∈ A:

1

t
|n(a)−

∑
b1∈A1

n(b1, a2, . . . , aI)P(m1
I = a1)| < η
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Since for every b1 ∈ A1,

1

t
|n(b1, a2, . . . , aI)−

∑
b2∈A2

n(b1, b2, a3, . . . , aI)P(m2
I = a2)| < η

for every a we get:

1

t
|n(a)−

∑
(b1,b2)∈A1×A2

n(b1, b2, a3. . . . , aI)P(m1
I = a1)P(m2

I = a2)| < 2η

Repeating the same procedure I − 1 times leads to the formula:

∀a ∈ A,
1

t
|n(a)−

∑
(b1,b2,...,bI−1)∈A−I

n(b1, b2, . . . , bI−1, aI)
I−1∏
j=1

P(mj
I = aj)| < (I − 1)η

If we write r(aI) = 1
t

∑
b−I∈A−I n(b−I , aI), we get that

∑
aI∈AI r(aI) = 1, so that

{r(aI), aI ∈ AI} defines a point rI ∈ SI and:

1

t

t∑
k=1

gI(hk) =
1

t

∑
a∈A

n(a)gI(a) ≤ gI(m−I
I , rI) + (I − 1)Cη ≤ (I − 1)Cη

This proves that when η is small enough, if all punishers are effective punishers,

the payoff of player I during the punishing period is less than ε.

3.3 Proof of Theorem B

Fix v ∈ V , ρ ≥ 0, and ã = (a1, . . . , al) such that v′ = 1
l

∑l
t=1 g(at) >> 0. We will fix

the parameters η, P and W0 such that for any W > W0, T > P and any selection θ

of ΘW,ρ, the following algorithm defines a terminal payoffs function ω and strategies

that are a subgame perfect equilibrium of G(T, θ(REW, ω)), with equilibrium path

repetitions of ã.
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Initialization:

Put rj = 0 for all j ∈ I, and t = 1.

NORM (Normal path):

Play ak at stage t = k [mod l] until t = T , then go to End.

If player i deviates from NORM at stage t0 < T − P , go to P(i) .

If any player deviates from NORM at stage t0 ≥ T − P , go to LD.

P(i) (Punishment of player i):

Play in G during P stages then redefine

rj = αi,j
η (ht0+1, . . . , ht0+P ) for all j 6= i

and keep ri unchanged.

Then go back to NORM.

LD (Late Deviations):

Redefine rj = −1 for all j ∈ I, play in G until t = T and go to End.

End:

Players receive θ(r1, . . . , rI) as terminal payoff.

We first choose η fixed by Lemma 3.2 so that for every i and every P , if for all j 6= i

αi,j
η (h1, . . . , hP ) = 1 then:

1

P

P∑
t=1

gi(ht) <
v′i
2

Also let ε1 > 0 and P1 be so that for any P > P1, and for each i:

1

P
(2ρ + 2C) + 2Iε1C <

v′i
2
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Lemma 3.1 gives for η and ε1 a value P0, we now fix P = kl, P > max{P0, P1}.

The algorithm does not define explicitly what the strategies of the players during

a punishing period are, but we will prove that: if W is large enough, the strategy pj
i

of player j consisting of playing mj
i repeatedly during the P stages of a punishing

period of player i dominates any alternative σj strategy for which P (αi,j
η = 0) > 2ε1.

In fact, playing a strategy that gives P (αi,j
η = 0) > 2ε1 leads to a maximum

expected payoff which is the sum of:

• PC during the punishing period.

• Some payoff, call it U j, during the intermediate period between the end of

the punishing period and the last stage of the game.

• The terminal payoff is at most W + ρ if αi,j
η = 1, and at most of ρ if αi,j

η = 0,

thus the expected terminal payoff is less than (1− 2ε1)W + ρ.

whereas using the strategy pj
i gives as minimum expected payoff the sum of:

• −PC during the punishing period.

• The same payoff U j during the intermediate period.

• As above, we see that the expected terminal payoff is greater than

(1− ε1)W − ρ.

Therefore the only condition that is needed is W > W0 with:

W0 ≥
2CP + 2ρ

ε1

We now check that for such a P , ε1, η, and W no player has incentive to deviate

from NORM at stage t0 ≤ T − P .

13



A player who deviates from NORM at stage t0 ≤ T − P can expect as payoff

no more than the sum of:

• C maximal payoff during the stage of the deviation.

• During the punishing period, the payoff is
∑P

t=0 gi(ht0+t) < P
v′i
2

if all punishers

are effective punishers, which has a probability greater than 1−2Iε1 to occur,

and if not the payoff during this period is less than 2CP . Therefore a upper

bound of the expected payoff is 2Iε1CP +
v′i
2
P .

• Some payoff U i during the intermediate period.

• The terminal payoff can raise from some wi up to a maximum of wi + 2ρ due

to a change of the parameter r.

By following the path NORM player i would receive:

• At least −C at stage t0.

• Pv′i during the punishing period.

• U i during the intermediate period.

• wi as terminal payoff.

Thus we need only to check that the following condition is satisfied:

C + 2Iε1P +
v′i
2

P + 2ρ ≤ −C + v′iP

The validity of the inequation above is a consequence of the definition of ε1 and

P .
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To prevent any late deviation, i. e. a deviation occurring at a stage t ≥ T −

P , we assign to W0 a value that is greater than 2PC + 2ρ. For these values

of the parameters, the algorithm above defines a subgame perfect equilibrium of

G(T, θ(REW)) with as equilibrium path repeated cycles of ã.

Thus we proved so far that the theorem holds for any v ∈ ∪lg(lA) ∩ IRI
++, and

hence for any fixed v ∈ V . Now, see that for any ρ ≥ 0 and ε > 0, since V is

compact, it is included in a finite union of balls ∪k∈KB(uk,
ε
2
), uk ∈ V . We just

pointed out that for every k ∈ K, there exists Wk, and Tk such that for T > Tk,

and W > Wk, B(uk,
ε
2
) ∩ E(T, θ(REW)) 6= ∅ for any selection θ of ΘW,ρ. It is easy

to check that if θ is a selection of ΘW,ρ with W ≥ maxk Wk and if T ≥ maxk Tk, for

any v ∈ V B(v, ε) ∩ E(T, θ(REW)) 6= ∅.

This completes the proof of Theorem B

4 Proof of the Main Theorem

To prove Theorem A for a fixed game G, we first prove the existence of some T1

such that co (E(T1)) has dimension I (Lemma 4.1). Using this, we show how

to construct T2 and payoffs in T2E(T2) that define a selection θ of ΘW,ρ as in

Theorem B (Lemma 4.2). Theorem A then appears as a consequence of the fact

that the repeated game G(T +T2) can be viewed as the repeated game with terminal

payoffs T
T+T2

G(T, T2E(T2)), where the factor T
T+T2

is a renormalization factor due

to different averaging of payoffs in G(T + T2) and in G(T, T2E(T2)).

Lemma 4.1 Under hypothesis (i) and (ii), there exists T1 ∈ IN such that

dim(co E(T1)) = I.
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Proof:

Let (A0, A1, . . . , AI) be I +1 action profiles of G so that dim(co {g(Ai), i ∈ I}) = I,

and let us consider the strategies defined for j ∈ I by:

• Play Aj, then P times e1, then P times e2,. . ., then P times eI .

• If player i deviates at stage 1, play P times f i instead of ei later.

These strategies define a subgame perfect equilibrium of G(IP +1) when P is large

enough, since the gain from deviating at first stage is compensated for by the loss

due to the repetition of “bad” equilibria later.

Therefore for every k, P
IP+1

∑I
i=1 g(ei) + g(Ak) ∈ E(IP + 1), thus dim(co E(IP +

1)) = I.

Lemma 4.2 Under hypothesis (i) and (ii):

∃ρ0 ≥ 0, ∀W ∈ IR, ∃T2 ∈ IN, ∃U ∈ IRI

∀r ∈ REW, ∃θ(r) ∈ T2E(T2), θ(r)− U ∈ B(Wr, ρ0)

Proof:

Let T1 be given by Lemma 4.2, and (U0, U1, . . . , UI) ∈ E(T1)
I+1 be such that

dim(co (U1 − U0, . . . , UI − U0)) = I, and let Vi = Ui − U0, so (Vi)i∈I is a basis

of IRI , and put ρ0 =
∑I

i=1 ‖Vi‖.

For every W ∈ IR and every r ∈ REW, there exists integer numbers (α1(r), . . . , αI(r))

such that:

‖
I∑

i=1

αi(r)Vi −Wr‖ < ρ0
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In fact every ball of radius ρ0 contains at least one point of the lattice of IRI

generated by {V1, V2, . . . , VI}. Put α0 = infi,r αi(r), and βi(r) = αi(r)−α0, therefore

we have:

∀r ∈ REW ‖
I∑

i=1

βi(r)Vi − (Wr − α0
I∑

i=1

Vi)‖ < ρ0

and let be γ = supr

∑
i βi(r). For every r ∈ REW,

‖
I∑

i=1

βi(r)Ui + (γ −
I∑

i=1

βi(r))U0 − (Wr + γU0 − α0
I∑

i=1

Vi)‖ < ρ0

Note that, if for i ∈ {1, 2}, σi is a subgame perfect equilibrium of G(ti) with

vector payoff zi, then the strategies (σ1, σ2) consisting of following σ1, then σ2 define

a subgame equilibrium of G(t1 + t2) with vector payoff z1 + z2. Hence for every r in

REW,
∑

i βi(r)Ui + (γ −∑
i βi(r))U0 is in γT1E(γT1). This proves Lemma 4.2 with

T2 = γT1, θ(r) =
∑

i βi(r)Ui + (γ −∑
i βi(r))U0 and U = γU0 − α0 ∑

i Vi+.

Proof of Theorem A:

Let be ρ0 ≥ 0 fixed by Lemma 4.2. For all ε > 0, let W0 be given by Theorem B

for ρ0 and ε
2

(F ∩ IRI
++ is non empty from assumption (i)), then choose U and T2

that fit Lemma 4.2 for W0.

Lemma 4.2 shows the existence of elements θ(r) ∈ T2E(T2) that define a selec-

tion θ of ΘW0,ρ0 + U . Since any translation of vector U of the terminal payoffs has

no effect on the strategies of the players, from Theorem B we get the existence of

T0 such that:

∀T > T0, ∀v ∈ V, B(v,
ε

2
) ∩ E(T, θ(REW)) 6= ∅

Therefore
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∀T > T0, ∀v ∈ V, B(v,
ε

2
) ∩ E(T, T2E(T2)) 6= ∅

Every subgame perfect equilibrium of G(T, T2E(T2)) extends to a subgame per-

fect equilibrium of G(T+T2), moreover for every T > 0 E(T+T2) = T
T+T2

E(T, T2E(T2)).

Since T2 is constant and T goes to infinity, this implies the existence of T̄ such that:

∀T > T̄ , ∀v ∈ V, B(v, ε) ∩ E(T + T2) 6= ∅

which completes the proof of Theorem A.

5 Conclusion and possible extensions

Thus we proved a Folk Theorem in mixed strategies for finitely repeated games. In

this theorem, the limit set of average equilibrium vector payoffs is V . We already

noticed that E(T ) and E∗(T ) are always included in V . Therefore Theorem A

gives a full characterization of limT→∞E(T ) when (i) and (ii) hold. Theorem A

may fail without the assumption (i) that implies the existence of at least two Nash

equilibria of G, as the counterexample of the prisoner’s dilemma shows. We also

know that Theorem 1 fails without the “Full Dimensionality” assumption (ii) by an

example given by Benoit and Krishna ([2], example 3.2) . The method used to prove

Theorem A might be extended to other classes of games, like games with signals,

and can be used to prove a Folk Theorem in mixed strategies for Overlapping

Generations Games [6].
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