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1 The subject and its importance

Repeated interactions arise in several domains such as Economics, Computer
Science, and Biology.

The theory of repeated games models situations in which a group of agents
engage in a strategic interaction over and over. The data of the strategic in-
teraction is fixed over time and is known by all the players. This is in contrast
with stochastic games, for which the data of the strategic interaction is con-
trolled by player’s choices, and repeated games with incomplete information,
where the stage game is not common knowledge among players1. Early stud-
ies of repeated games include Luce and Raiffa [LR57] and Aumann [Aum60].
In the context of production games, Friedman [Fri71] shows that, while the
competitive outcome is the only one compatible with individual profit maxi-
mization under a static interaction, collusion is sustainable at an equilibrium
when the interaction is repeated.

Generally, repeated games provide a framework in which individual util-
ity maximization by selfish agents is compatible with welfare maximization
(common good), while this is known to fail for many classes of static inter-
actions.

1.1 Motivating Example

The discussion of an example shows the importance of repeated games and
introduces the questions studied.

Consider the following game referred to as the Prisoner’s Dilemma:

1The reader is referred to the corresponding chapters of this Encyclopedia.
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C D

C 3, 3 −1, 4
D 4,−1 0, 0

The prisoner’s dilemma

Player 1 chooses the row, player 2 chooses the column, and the pair of
numbers in the corresponding cell are the payoffs to players 1 and 2 respec-
tively.

In a one-shot interaction, the only outcome consistent with game theory
predictions is (D, D). In fact, each player is better off playing D whatever
the other player does.

On the other hand, if players engage in a repeated Prisoner’s Dilemma,
if they value sufficiently future payoffs compared to present ones, and if past
actions are observable, then (C, C) is a sustainable outcome. Indeed, if each
player plays C as long as the other one has always done so in the past, and
plays D otherwise, both player have an incentive to always play C, since the
short term gain that can be obtained by playing D is more than offset by
the future losses entailed by the opponent playing D at all future stages.

Hence, a game theoretical analysis predicts significantly different out-
comes from a repeated game than from static interaction. In particular, in
the Prisoner’s Dilemma, the cooperative outcome (C, C) can be sustained in
the repeated game, while only the non-cooperative outcome (D, D) can be
sustained in one-shot interactions.

In general, what are the equilibrium payoffs of a repeated game and how
can they be computed from the data of the static game? Is there a significant
difference between games repeated a finite number of times and infinitely re-
peated ones? What is the role played by the degree of impatience of players?
Do the conclusions obtained for the Prisoner’s Dilemma game and for other
games rely crucially on the assumption that each player perfectly observes
other player’s past choices, or would imperfect observation be sufficient? The
theory of repeated games aims at answering these questions, and many more.

2 Games with observable actions

This section focuses on repeated games with perfect monitoring in which,
after each period of the repeated game, all strategic choices of all the players
are publicly revealed.
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2.1 Data of the game, strategies, payoffs

2.1.1 Data of the stage game

There is a finite set I of players. A stage game is repeated over and over.
Each player i’s action set in this stage game is denoted Ai, and Si = ∆(Ai) is
the set of player i’s mixed actions2. Each degenerate lottery in Si (which puts
probability 1 to one particular action in Ai) is associated to the corresponding
element in Ai. A choice of action for each player i determines an outcome
a ∈

∏
i Ai. The payoff function of the stage game is g : A → R

I . Payoffs
are naturally associated to profiles of mixed actions s ∈ S =

∏
i Si using the

expectation: g(s) = Esg(a).

2.1.2 Repeated Game

After each repetition of the stage game, the action profile previously chosen
by the players is publicly revealed. After the t first repetitions of the game,
player’s information consists of the publicly known history at stage t, which
is an element of Ht = At (by convention, we set H0 = {∅}). A strategy in
the repeated game specifies the choice of a mixed action at every stage, as a
function of the past observed history. More specifically, a behavioral strategy
for player i is of the form σi : ∪t Ht → Si. When all the strategy choices
belong to Ai (σi : ∪t Ht → Ai), σi is called a pure strategy.

Other strategy specifications A behavioral strategy allows the player
to randomize each action depending on past history. If, at the start of the
repeated game, the player was to randomize over the set of behavioral strate-
gies, the result would be equivalent to a particular behavioral strategy choice.
This result is a consequence of Kuhn’s theorem ([Kuh53], [Aum64]). Further-
more, behavioral strategies are also equivalent to randomizations over the set
of pure strategies.

Induced plays Every choice of pure strategies σ = (σi)i by all the players
induces a play h = (a1, a2, . . .) ∈ A∞ in the repeated game, defined induc-
tively by a1 = (σi,0(∅)) and at = (σi,t−1(a1, . . . , at−1)). A profile of behavioral
strategies σ defines a probability distribution Pσ over plays.

Preferences To complete the definition of the repeated game, it remains to
define player’s preferences over plays. The literature commonly distinguishes
infinitely repeated with or without discounting, and finitely repeated games.

2for any finite set X , ∆(X) denotes the set of probabilities over X .
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In infinitely repeated games with no discounting, the players care about
their long-run stream of stage payoffs. In particular, the payoff in the re-
peated game associated to a play h = (a1, a2, . . .) ∈ A∞ coincides with the
limit of the Cesaro means of stage payoffs when this limit exists. When this
limit does not exist, the most common evaluation of the stream of payoffs
is defined through a Banach limit of the Cesaro means (a Banach limit is
a linear form on the set of bounded sequences that lies always between the
liminf and the limsup).

In infinitely repeated games with discounting, a discount factor 0 < δ < 1
characterizes the player’s degree of impatience. A payoff of 1 at stage t is
equivalent to a payoff of δ at stage t + 1. Player i’s payoff in the repeated
game for the play h = (a1, a2, . . .) ∈ A∞ is the normalized sum of discounted
payoffs: (1 − δ)

∑
t≥1

δt−1gi(at).
In finitely repeated games, the game ends after some stage T . Payoffs

induced by the play after stage T are irrelevant (and a strategy needs not
specify choices after stage T ). The payoff for a player is the average of the
stage payoffs during stages 1 up to T .

Equilibrium notions What plays can be expected to be observed in
repeated interactions of players who observe each other’s choices? Non-
cooperative Game Theory focuses mainly on the idea of stable convention,
i.e. of strategy profiles from which no player has incentives to deviate, know-
ing the strategies adopted by the other players.

A strategy profile forms a Nash Equilibrium (Nash [Nas51]) when no
player can improve his payoff by choosing an alternative strategy, as long as
other players follow the prescribed strategies.

In some cases, the observation of past play may not be consistent with the
prescribed strategies. When, for every possible history, each player’s strategy
maximizes the continuation stream of payoffs, assuming that other players
abide with their prescribed strategies at all future stages, the strategy profile
forms a subgame perfect equilibrium (Selten [Sel65]).

Perfect equilibrium is a more robust and often considered a more satis-
factory solution concept than Nash equilibrium. The construction of perfect
equilibria is in general also more demanding than the construction of Nash
equilibria.

The main objective of the theory of repeated games is to characterize
the set of payoff vectors that can be sustained by some Nash or perfect
equilibrium of the repeated game.
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2.2 Necessary conditions on equilibrium payoffs

Some properties are common to all equilibrium payoffs. First, under the
common assumption that all players evaluate the payoff associated to a play
in the same way3, the resulting payoff vector in the repeated game is a convex
combination of stage payoffs4. That is, the payoff vector in the repeated game
is an element of the convex closure of g(A), called the set of feasible payoffs
and denoted F .

Now consider a strategy profile σ, and let τi be a strategy of player i that
plays after each history (a1, . . . , at) a best response to the profile of mixed
actions chosen by the other players in the next stage. At any stage of the
repeated game, the expected payoff for player i using τi is no less than5

vi = min
s
−i∈S

−i

max
ai∈Ai

gi(s−i, ai) (1)

The payoff vi is referred to as player i’s min max payoff. A payoff vector
that provides each player i with at least [resp. strictly more than] vi is called
individually rational [resp. strictly individually rational], and IR [resp. IR∗]
denotes the set of such payoff vectors. Since for any strategy profile, there ex-
ists a strategy of player i that yields a payoff of no less than vi, all equilibrium
payoffs have to be individually rational.

Also note that players j 6= i collectively have a strategy profile in the
repeated game that forces player i’s payoff down to vi: they play repeatedly a
mixed strategy profile that achieves the minimum in the definition of vi. Such
a strategy profile in the one-shot game is referred to as punishing strategy,
or min max strategy against player i.

For the Prisoner’s Dilemma game, F is the convex hull of (0, 0), (4,−1),
(−1, 4) and (3, 3). Both player’s min max levels are equal to 0, so that IR is
the positive orthant. Figure 1 illustrates the set of feasible and individually
rational payoff vectors (hatched area):

The set of feasible and individually rational payoffs can be easily com-
puted from the stage game data.

3A notable exception is the work of Lehrer and Pauzner [LP99] who study repeated
games where players has heterogenous impatience levels.

4The payoff vector resulting from a play does not necessarily belong to F if players
have different evaluations of payoff streams. For instance, in a repetition of the Prisoner’s
Dilemma, if player 1 cares only about the payoff in stage 1 and player 2 cares only about
the payoff in stage 2, it is possible for both players to obtain a payoff of 4 in the repeated
game.

5If (Ei)i∈I is a collection of sets, e−i denotes an element of E−i =
∏

j 6=i Ej . A profile
e ∈

∏
j Ej is denoted e = (ei, e−i) when the i-th component is stressed.
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Figure 1: F and IR for the Prisoner’s Dilemma

2.3 Infinitely patient players

The following result has been part of the folklore of Game Theory at least
since the mid 1960’s. Its authorship is obscure (see the introduction of Au-
mann [Aum81]). For this reason, it is commonly referred to as the “Folk
Theorem”. By extension, characterization of sets of equilibrium payoffs in
repeated games are also referred to as “Folk Theorems”.

Theorem 1 The set of equilibrium payoffs of the repeated game with no
discounting coincides with the set of feasible and individually rational payoffs.

Aumann and Shapley [AS76], [AS94] and Rubinstein [Rub77] show that
restricting attention to perfect equilibria does not narrow down the set of
equilibrium payoffs. They prove that:

Theorem 2 The set of perfect equilibrium payoffs of the repeated game with
no discounting coincides with the set of feasible and individually rational
payoffs.

We outline a proof of Theorem 2. It is established that any equilibrium
payoff is in F∩IR, we need only to prove that each element of F∩IR is a sub-
game perfect equilibrium payoff. Let x ∈ F ∩ IR, and let h = a1, . . . , at, . . .

be a play inducing x. Consider the strategies that play at in stage t; if player i

does not respect this prescription at stage t0, the other players punish player
i for t0 stages by repeatedly playing the min max strategy profile against
player i. After the punishment phase is over, players revert to the play of h,
hence playing at0+1, . . .

6



Now we explain why these strategies form a subgame perfect equilibrium.
After any history, consider any strategy of player i. The induced play by this
strategy for player i and by other player’s prescribed strategies is, up to a
subset of stages of null density, defined by the sequence h with interweaved
periods of punishment for player i. Hence the induced long-run payoff for
player i is a convex combination of his punishment payoff and of the payoff
induced by h. The result follows since the payoff for player i induced by h is
no worse than the punishment payoff.

2.4 Impatient players

The strategies constructed in the proof of the Folk Theorem for repeated
games with infinitely patient players (Theorem 1) do not necessarily consti-
tute a subgame perfect equilibrium if players are impatient. Indeed, during a
punishment phase, the punishing players may be receiving bad stage payoffs,
and these stage payoffs matter in the evaluation of their stream of payoffs.
When constructing subgame perfect equilibria of discounted games, one must
make sure that after a deviation of player i, players j 6= i have incentives to
implement player i’s punishment.

Nash Reversion Friedman [Fri71] shows that every feasible payoff that
Pareto dominates a Nash equilibrium payoff of the static game is a subgame
perfect equilibrium payoff of the repeated game provided that players are
patient enough. In Friedman’s proof, punishments take the simple form of
reversion to the repeated play of the static Nash equilibrium forever. In the
Prisoner’s Dilemma, (D, D) is the only static Nash equilibrium payoff, and
thus (3, 3) is a subgame perfect Nash equilibrium payoff of the repeated game
if players are patient enough. Note however that in some games, the set of
payoffs that Pareto dominate some equilibrium payoff may be empty. Also,
Friedman’s result constitutes a partial Folk Theorem only in that it does not
characterize the full set of equilibrium payoffs.

The recursive structure Repeated games with discounting possess a
structure similar to dynamic programming models. At any stage in time,
players choose actions that maximize the sum of the current payoff and the
payoff at the subsequent stages. When strategies form a subgame perfect
equilibrium, the payoff vector at subsequent stages must be an equilibrium
payoff, and players must have incentives to follow the prescribed strategies
at the current stage. This implies that subgame perfect equilibrium pay-
offs have a recursive structure, first studied by Abreu [Abr88]. Section 3.3.1
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presents the recursive structure in more details for the more general model
of games with public monitoring.

The Folk Theorem for Discounted Games Relying on Abreu’s recur-
sive results, Fudenberg and Maskin [FM86] prove the following Folk Theorem
for subgame perfect equilibria with discounting:

Theorem 3 If the number of players is 2 or if the set feasible payoff vectors
has non-empty interior, then any payoff vector that is feasible and strictly in-
dividually rational is a subgame perfect equilibrium of the discounted repeated
game, provided that players are sufficiently patient.

Forges, Mertens and Neyman [FMN86] provide an example for which a
payoff which is individually rational but not strictly individually rational is
not an equilibrium payoff of the discounted game.

Abreu, Dutta and Smith [ADS94] show that the non-empty interior condi-
tion of the theorem can be replaced by a weaker condition of “non equivalent
utilities”: no pair of players have same preferences over outcomes. Wen
[Wen94] shows that a Folk Theorem still holds when the condition of non
equivalent utilities fails if one replaces the minmax level defining individu-
ally rational payoffs by some “effective minmax” payoffs.

2.5 Finitely repeated games

Strikingly, equilibrium payoffs in finitely repeated games and in infinitely re-
peated games can be drastically different. This effect can be best exemplified
in repetitions of the Prisoner’s Dilemma.

The Prisoner’s Dilemma Recall that in an infinitely repeated Prisoner’s
Dilemma, cooperation at all stages is achieved at a subgame perfect equilib-
rium if players are patient enough. By contrast, at every Nash equilibrium
of any finite repetition of the Prisoner’s Dilemma, both players play D at
every stage with probability 1.

Now we present a short proof of this result. Consider any Nash equi-
librium of the Prisoner’s Dilemma repeated T times. Let a1, . . . , aT be a
sequence of action profiles played with positive probability at the Nash equi-
librium. Since each player can play D at the last stage of the repetition, and
D is a dominating action, aT = (D, D). We now prove by induction on τ

that for any such τ , aT−τ , . . . , aT = (D, D), . . . , (D, D). Assume the induc-
tion hypothesis valid for τ − 1. Consider a strategy for player i that follows
the equilibrium strategy up to stage T −τ −1, then plays D from stage T −τ

8



on. This strategy obtains the same payoff as the equilibrium strategy an
stages 1, . . . , T − τ − 1, and as least as much as the equilibrium strategy at
stages T −τ +1, . . . , T −τ . Hence, this strategy cannot obtain more than the
equilibrium strategy at stage T − τ , and therefore the equilibrium strategy
plays D at stage T − τ with probability 1 as well.

Sorin [Sor86] proves the more general result:

Theorem 4 Assume that in every Nash equilibrium of G, all players are
receiving their individually rational levels. Then, at each Nash equilibrium of
any finitely repeated version of G, all players are receiving their individually
rational levels.

The proof of Theorem 4 relies on a backwards induction type of argument,
but it is striking that the result applies for all Nash equilibria and not only
for subgame perfect Nash equilibria. This result shows that, unless some
additional assumptions are made on the one-shot game, a Folk Theorem
cannot obtain for finitely repeated games.

Games with unique Nash payoff Using a backwards induction argu-
ment, Benôıt and Krishna [BK85] obtain the following result.

Theorem 5 Assume that G admits x as unique Nash equilibrium payoff.
Then every finite repetition of G admits x as unique subgame perfect equilib-
rium payoff.

Theorems 4 and 5 rely on the assumption that the last stage of repetition, T ,
is common knowledge between players. Neyman [Ney99] shows that a Folk
Theorem obtains for the finitely repeated Prisoner’s Dilemma (and for other
games) if there is lack of common knowledge on the last stage of repetition.

Folk Theorems for finitely repeated games A Folk Theorem can be
obtained when there are two Nash equilibrium payoffs for each player. The
following result is due to Benôıt and Krishna [BK85] and Gossner [Gos95].

Theorem 6 Assume that each player has two distinct Nash equilibrium pay-
offs in G and that the set of feasible payoffs has non-empty interior. Then,
the set of subgame perfect equilibrium payoffs of the T times repetition of G

converges to the set of feasible and individually rational payoffs as T goes to
infinity.
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Hence, with at least two equilibrium payoffs per player, the sets of equi-
librium payoffs of finitely repeated games and infinitely repeated games are
asymptotically the same.

The condition that each player has two distinct Nash equilibrium payoffs
in the stage game can be weakened, see Smith [Smi95]. Assume for simplicity
that one player has two distinct Nash payoffs. By playing one of the two
Nash equilibria in the last stages of the repeated game, it is possible to
provide incentives for this player to play actions that are not part of Nash
equilibria of the one-shot game in previous stages. If this construction leads
to perfect equilibria in which a player j 6= i has distinct payoffs, we can now
provide incentives for both players i and j. If successive iterations of this
procedure yield distinct subgame perfect equilibrium payoffs for all players,
a Folk Theorem applies.

3 Games with non observable actions

For infinitely repeated games with perfect monitoring, a complete and sim-
ple characterization of the set of equilibrium payoffs is obtained: feasible and
individually rational payoff vectors. In particular, cooperation can be sus-
tained at equilibrium. How equilibrium payoffs of the repeated game depend
on the quality of player’s monitoring of each other’s actions is the subject of
a very active area of research.

Repeated games with imperfect monitoring, in which players observe im-
perfectly other player’s action choices, were first motivated by economic ap-
plications. In Stigler [Sti64], two firms are repeatedly engaged in price com-
petition over market shares. Each firm observes its own sales, but not the
price set by the rival. While it is in the best interest for both firms to set
a collusive price, each firm has incentives to secretly undercut the rival’s
price. Upon observing plunging sales, should a firm deduce that the rival
firm is undercutting prices, and retaliate by setting lower prices, or should
lower sales be interpreted as a result of an exogenous shock on market de-
mand? Whether collusive behavior is sustainable or not at equilibrium is one
of the motivating questions in the theory of repeated games with imperfect
monitoring.

It is interesting to compare repeated games with imperfect monitoring
with their perfect monitoring counterparts.

The structure of equilibria used to prove the Folk Theorem with perfect
monitoring and no discounting is rather simple: if a player deviates from
the prescribed strategies, the detection is detected and the deviating player
is identified, all other players can then punish the deviator. With imper-
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fect monitoring, not all deviations are detectable, and when a deviation is
detected, deviators are not necessarily identifiable. The notions of detection
and identification allow fairly general Folk Theorems for undiscounted games.
We present these results in section 3.2.

With discounting, repeated games with perfect monitoring possess a re-
cursive structure that facilitates their study. Discounted games with public
monitoring also possess a recursive structure. We review the major results
of this branch of the literature in section 3.3.

Almost-perfect monitoring is the natural framework to study the effect
of small departures from the perfect or public monitoring assumptions. We
review this literature in section 3.4.

Little is known about general discounted games with imperfect monitor-
ing. We present the main known results in section 3.5.

With perfect monitoring, the worst equilibrium payoff for a player is
given by the min max of the one-shot game, where punishing (minimizing)
players choose an independent profile of mixed strategies. With imperfect
monitoring, correlation past signals for the punishing players may lead to
more efficient punishments. We present results on punishment levels in 3.6.

3.1 Model

In this section we define repeated games with imperfect monitoring, and
describe several classes of monitoring structures of particular interest.

3.1.1 Data of the game

Recall that the one-shot strategic interaction is described by a finite set I

of players, a finite action set Ai for each player i, and a payoff function
g : A → R

I . Player’s observation of each other’s actions is described by a
monitoring structure given by a finite set of signals Yi for each player i and by
a transition probability Q : A → ∆(Y ) (with A =

∏
i∈I Ai and Y =

∏
i∈I Yi).

When the action profile chosen is a = (ai)i∈I , a profile of signals y = (yi)i∈I

is drawn with probability Q(y|a) and yi is observed by player i.

Perfect monitoring Perfect monitoring is the particular case in which
each player observes the action profile chosen: for each player i, Yi = A and
Q((yi)i∈I |a) = 1{∀i, yi=a}.

Almost perfect monitoring The monitoring structure is ε-perfect (see
Mailath and Morris [MM02]) when each player can identify the other player’s
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action with a probability of error less than ε. This is the case if there exist
functions fi : Ai × Yi → A−i for all i such that, for all a ∈ A:

Q(∀i, fi(ai, yi) = a−i|a) ≥ 1 − ε

Almost-perfect monitoring refers to ε-perfect monitoring for small values of ε.

Canonical structure The monitoring structure is canonical when each
player’s observation corresponds to an action profile of the opponents, that
is, when Yi = A−i.

Public and almost public signals Signals are public when all the players
observe the same signal, i.e., Q(∀i, j yi = yj|a) = 1, for each action profile
a. For instance, in Green and Porter [GP84], firms compete over quantities,
and the public signal is the realization of the price. Firms can then make
inferences on rival’s quantities based on their own quantity and market price.

The case in which Q(∀i, j yi = yj |a) is close to 1 for every a is referred to
as almost public monitoring (see Mailath and Morris [MM02]).

Deterministic signals Signals are deterministic when the signal profile
is uniquely determined by the action profile. When a is played, the signal
profile y is given by y = f(a), where f is called the signalling function.

Observable payoffs Payoffs are observable when each player i can deduce
his payoff from his action and his signal. This is the case if there exists a
mappings ϕ : Ai × Yi → R such that for each action profile a, Q(∀i gi(a) =
ϕ(ai, yi)|a) = 1.

3.1.2 The Repeated Game

The game is played repeatedly and after each stage t, the profile of signals yt

received by the players is drawn according to the distribution Q(yt|at), where
at is the profile of action chosen at stage t. A player’s information consists
of his past actions and signals. We let Hi,t = (Ai × Yi)

t be the set of player
i’s histories of length t. A strategy for player i now consists of a mapping
σi : ∪t≥0 Hi,t → Si. The set of complete histories of the game after t stages
is Ht = (A × Y )t, it describes chosen actions and received signals for all the
players at all past stages. A strategy profile σ = (σi)i∈I induces a probability
distribution Pσ on the set of plays H∞ = (A × Y )∞.
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3.1.3 Equilibrium notions

Nash equilibria Player’s preferences over game plays are defined accord-
ing to the same criteria as for perfect monitoring. We focus on infinitely
repeated games, both discounted and undiscounted. A choice of players’
preferences defines a set of Nash equilibrium payoffs in the repeated game.

Sequential equilibria The most commonly used refinement of Nash equi-
librium for repeated games with imperfect monitoring is the sequential equi-
librium concept (Kreps and Wilson, [KW82]), which we recall here.

A belief assessment is a sequence µ = (µi,t)t≥1, i∈I with µi,t : Hi,t →
∆(Ht), i.e., given the private history hi of player i, µi,t(hi) is the probability
distribution representing the belief that player i holds on the full history.

A sequential equilibrium of the repeated game is a pair (σ, µ) where σ is
a strategy profile and µ is a belief assessment such that: 1) for each player
i and each history hi, σi is a best reply in the continuation game, given the
strategies of the other players and the belief that player i holds regarding
the past; 2) the beliefs must be consistent in the sense that (σ, µ) is the
pointwise limit of a sequence (σn, µn) where for each n, σn is a completely
mixed strategy (it assigns positive probability to every action after every
history) and µn is the unique belief derived from Bayes’ law.

Sequential equilibria are defined both on the discounted game and the
undiscounted versions of the repeated game.

For undiscounted games, the set of Nash equilibrium payoffs and sequen-
tial equilibrium payoffs coincide. The two notions also coincide for discounted
games when the monitoring has full support (i.e. under every action profile,
all signal profiles have positive probability). The results presented in this sur-
vey all hold for sequential equilibria, both for discounted and undiscounted
games.

3.1.4 Extensions of the repeated game

When player receive correlated inputs or may communicate between stages of
the repeated game, the relevant concepts are correlated and communication
equilibria.

Correlated equilibria A correlated equilibrium (Aumann [Aum74]) of
the repeated game is an equilibrium of an extended game in which: at a
preliminary stage, a mediator chooses a profile of correlated random inputs
and informs each player of his own input; then the repeated game is played.
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A characterization of the set of correlated equilibrium payoffs for two-player
games is obtained by Lehrer [Leh92a].

Correlation arises endogenously in repeated games with imperfect moni-
toring, as the signals received by the players can serve as correlated inputs
that influence player’s continuation strategies. This phenomenon is called in-
ternal correlation, and was studied by Lehrer, [Leh91], Gossner and Tomala,
[GT06], [GT07].

Communication equilibria An (extensive form) communication equilib-
rium (Myerson [Mye82], Forges [For86]) of a repeated game is an equilibrium
of an extension of the repeated game in which after every stage, players
send messages to a mediator, and the mediator sends back private outputs
to the players. Characterizations of the set of communication equilibrium
payoffs are obtained under weak conditions on the monitoring structure, see
e.g.Kandori and Matsushima [KM98], Compte [Com98], and Renault and
Tomala [RT04].

3.2 Detection and identification

3.2.1 Equivalent actions

A deviation from a player is detectable when it induces a different distribution
of signals for other players. When two actions induce the same distribution of
actions for other players, they are called equivalent (Lehrer [Leh90], [Leh91],
[Leh92a], [Leh92b]):

Definition 1 Two actions ai and bi of player i are equivalent, and we note
ai ∼ bi, if they induce the same distribution of other players’ signals:

Q(y−i|ai, a−i) = Q(y−i|bi, a−i), ∀a−i

Example 1

Consider the two-player repeated Prisoner’s Dilemma where player 2 receives
no information about the actions of player 1 (e.g. Y2 is a singleton). The
two actions of player 1 are thus equivalent. The actions of player 2 are inde-
pendent of the actions of player 1: player 1 has no impact on the behavior
of player 2. Player 2 has no power to threat player 1 and in any equilibrium,
player 1 defects at every stage. Player 2 also defects at each stage: since
player 1 always defects, he also loses his threatening power. The only equi-
librium payoff in this repeated game is thus (0, 0).
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Example 1 suggests that between two equivalent actions, a player chooses
at equilibrium the one that yields the highest stage payoff. This is indeed the
case when the information received by a player does not depend on his own
action. Lehrer [Leh90] studies particular monitoring structures satisfying
this requirement. Recall from Lehrer [Leh90] the definition of semi-standard
monitoring structures: each action set Ai is endowed with a partition Āi,
when player i plays ai, the corresponding partition cell āi is publicly an-
nounced. In the semi-standard case, two actions are equivalent if and only
if they belong to the same cell: ai ∼ bi ⇐⇒ āi = b̄i and the information
received by a player on other player’s action does not depend on his own
action.

If player i deviates from ai to bi, the deviation is undetected if and only
if ai ∼ bi. Otherwise it is detected by all other players. A profile of mixed
actions is called immune to undetectable deviations if no player can profit by
a unilateral deviation that maintains the same distribution of other players’
signals. The following result, due to Lehrer [Leh90], characterizes equilibrium
payoffs for undiscounted games with semi-standard signals:

Theorem 7 In a undiscounted repeated game with semi-standard signals,
the equilibrium payoffs are the individually rational payoffs that belongs to
the convex hull of payoffs generated by mixed action profiles that are immune
to undetectable deviations.

3.2.2 More informative actions

When the information of player i depends on his own action, some deviations
may be detected in the course of the repeated game even though they are
undetectable in the stage game.

Example 2

Consider the following modification of the Prisoner’s dilemma. The action
set of player 1 is A1 = {C1, D1} × {C2, D2} and the action set of player 2
is {C2, D2}. An action for player 1 is thus a pair a1 = (ã1, ã2). When the
action profile (ã1, ã2, a2) is played, the payoff to player i is gi(ã1, a2). We
can interpret the component ã1 as a real action (it impacts payoffs) and the
component ã2 as a message sent to player 2 (it does not impact payoffs). The
monitoring structure is as follows:

• player 2 only observes the message component ã2 of the action of player
1 and,

15



• player 1 perfectly observes the action of player 2 if he chooses the
cooperative real action (ã1 = C1), and gets no information on player
2’s action if he defects (ã1 = D1).

Note that the actions (C1, C2) and (D1, C2) of player 1 are equivalent, and
so are the actions (C1, D2) and (D1, D2). However, it is possible to construct
an equilibrium that implements the cooperative payoff along the following
lines:

i) Using his message component, player 1 reports at each stage t > 1 the
previous action of player 2. Player 1 is punished in case of a non matching
report.

ii) Player 2 randomizes between both actions, so that player 1 needs to
play the cooperative action in order to report player 2’s action accurately.
The weight on the defective action of player 2 goes to 0 as t goes to infinity
to ensure efficiency.

Player 2 has incentives to play C2 most of the time, since player 1 can
statistically detect if player 2 uses the action D2 more frequently than pre-
scribed. Player 1 also has incentives to play the real action C1, as this is the
only way to observe player 2’s action, which need to be reported later on.

The key point in the example above is that the two real actions C1 and D1 of
player 1 are equivalent but D1 is less informative than C1 for player 1. For
general monitoring structures an action ai is more informative than an action
bi if: whenever player 1 plays ai, can reconstitue the signal he would have
observed, had he played bi. The precise definition of the more informative
relation relies Blackwell’s ordering of stochastic experiments [Bla51]:

Definition 2 The action ai of player i is more informative than the action
bi if there exists a transition probability f : Yi → ∆(Yi) such that for each
a−i and each profile of signals y,

∑
yi

f(y′
i|yi)Q(yi, y−i|ai, a−i) = Q(y′

i, y−i|bi, a−i)

We denote ai � bi if ai ∼ bi and ai is more informative than bi.
Assume that prescribed strategies require player i to play bi at stage t,

and let ai � bi. Consider the following deviation from player i: play ai at
stage t, and reconstruct a signal at stage t that could have arisen from the
play of bi. In all subsequent stages, play as if no deviation took place at stage
t, and as if the reconstructed signal had been observed at stage t. Not only
such a deviation would be undetectable at stage t, since ai ∼ bi, but it would
also be undetectable at all subsequent stages, as it would induce the same
probability distribution over plays as under the prescribed strategy. This
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argument shows that, if an equilibrium strategy specifies that player i plays
ai, there is no bi � ai that yields a higher expected stage payoff that ai.

Definition 3 A distribution of actions profiles p ∈ ∆(A) is immune to un-
detectable deviations if for each player i and pair of actions ai, bi such that
bi � ai: ∑

a
−i

p(ai, a−i)gi(ai, a−i) ≥
∑

a
−i

p(ai, a−i)gi(bi, a−i)

If p is immune to undetectable deviations, and if player i is supposed to
play ai, any alternative action bi that yields a greater expected payoff can
not be such that bi � ai.

The following proposition gives a necessary condition on equilibrium pay-
offs that holds both in the discounted and in the undiscounted cases.

Proposition 1 Every equilibrium payoff of the repeated game is induced by
a distribution that is immune to undetectable deviations.

The condition of Proposition 1 is tight for some specific classes of games,
all of them assuming two players and no discounting.

Following Lehrer [Leh92a], signals are non trivial if, for each player i,
there exist an action ai for player i and two actions aj, bj for i’s opponent
such that the signal for player i is different under (ai, aj) and (ai, bj). Lehrer
[Leh92a] proves:

Theorem 8 The set of correlated equilibrium payoffs of the undiscounted
game with deterministic and non trivial signals is the set of individually ra-
tional payoffs induced by distributions that are immune to undetectable devi-
ations.

Lehrer [Leh92b] assumes that payoffs are observable, and obtains the
following result:

Theorem 9 In a two-player repeated game with no discounting, non-trivial
signals and observable payoffs, the set of equilibrium payoffs is the set of
individually rational payoffs induced by distributions that are immune to un-
detectable deviations.

Finally, Lehrer [Leh91] shows that in some cases, one may dispense with
the correlation device of Theorem 8, as all necessary correlation can be gen-
erated endogenously through the signals of the repeated game:

Proposition 2 In two-player games with non-trivial signals such that ei-
ther the action profile is publicly announced or a blank signal is publicly
announced, the set of equilibrium payoffs coincides with the set of correlated
equilibrium payoffs.
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3.2.3 Identification of deviators

A deviation is identifiable when every player can infer the identity of the
deviating player from his observations. For instance, in a game with public
signals, if separate deviations from players i and j induce the same distri-
bution of public signals, these deviations from i or j are not identifiable. In
order to be able to punish the deviating player, it is sometimes necessary to
know his identity. Detectability and identifiability are two separate issues,
as shown by the following example.

Example 3

Consider the following 3-player game where player 1 chooses the row, player
2 chooses the column and player 3 chooses the matrix.

L R

T 1, 1, 1 4, 4, 0
B 4, 4, 0 4, 4, 0

W

L R

0, 3, 0 0, 3, 0
0, 3, 0 0, 3, 0

M

L R

3, 0, 0 3, 0, 0
3, 0, 0 3, 0, 0

E

Consider the monitoring structure in which actions are not observable
and the payoff vector is publicly announced.

The payoff (1, 1, 1) is feasible and individually rational. The associated
action profile (T, L, W ) is immune to undetectable deviations since any indi-
vidual deviation from (T, L, W ) changes the payoff.

However, (1, 1, 1) is not an equilibrium payoff. The reason is that, player
3, who has the power to punish either player 1 or player 2, cannot punish
both players simultaneously: punishing player 1 rewards player 2 and vice-
versa. More precisely, whatever weights player 3 puts on the action M and
E, the sum of player 1 and player 2’s payoffs is greater than 3. Any equilib-
rium payoff vector v = (v1, v2, v3) must thus satisfy v1 + v2 ≥ 3. In fact, it is
possible to prove that the set of equilibrium payoffs of this repeated game is
the set of feasible and individually rational payoffs that satisfy this constraint.

Approachability When the deviating player cannot be identified, it may
be necessary to punish a group of suspects altogether. The notion of payoff
that is enforceable under group punishments is captured by the definition of
approachable payoffs:

Definition 1 A payoff vector v is approachable if there exists a strategy
profile σ such that, for every player i and unilateral deviation τi of player i,
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the average payoff of player i under (τi, σ−i) is asymptotically less than or
equal to vi.

Blackwell’s [Bla56] approachability theorem and its generalization by
Kohlberg [Koh75] provide simple geometric characterizations of approachable
payoffs. It is straightforward that approachability is a necessary condition
on equilibrium payoffs:

Proposition 3 Every equilibrium payoff of the repeated game is approach-
able.

Renault and Tomala [RT04] show that the conditions of Proposition 1
and 3 are tight for communication equilibria:

Theorem 10 For every game with imperfect monitoring, the set of com-
munication equilibrium payoffs of the repeated game with no discounting is
the set of approachable payoffs induced by distributions which are immune to
undetectable deviations.

Tomala [Tom98] shows that pure strategy equilibrium payoffs of undis-
counted repeated games with public signals are also characterized through
identifiability and approachability conditions (the approachability definition
then uses pure strategies). Tomala [Tom99] provides a similar characteriza-
tion in mixed strategies for a restricted class of public signals.

Identification through endogenous communication A deviation may
be identified in the repeated game even though it cannot be identified in stage
game. In a network game, players are located at nodes of a graph, and each
player monitors his neighbors’ actions. Each player can use his actions as
messages that are broadcasted to all the neighbors in the graph. The graph is
called 2-connected if no single node deletion disconnects the graph. Renault
and Tomala [RT98] show that when the graph is 2-connected, there exists a
communication protocol among the players that ensures that the identity of
any deviating player becomes common knowledge among all players in finite
time. In this case, identification takes place through communication over the
graph.

3.3 Public Equilibria

In a seminal paper, Green and Porter [GP84] introduce a model in which
firms are engaged in a production game and publicly observe market prices,
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which depend both on quantities produced and on non-observable exogenous
market shocks. Can collusion be sustained at equilibrium even prices convey
imperfect information on quantities produced? This motivates the study of
public equilibria for which sharp characterizations of equilibrium payoffs are
obtained.

Signals are public when all sets of signals are identical, i.e.Yi = Ypub for
each i and Q(∀i, j yi = yj|a) = 1 for every a. A public history of length t

is a record of t public signals, i.e. an element of Hpub,t = (Ypub)
t. A strategy

σi for player i is a public strategy if it depends on the public history only:
if hi = (ai,1, y1, . . . , ai,t, yt) and h′

i = (a′
i,1, y

′
1, . . . , a

′
i,t, y

′
t) are two histories for

player i such that y1 = y′
1, . . . , yt = y′

t, then σi(hi) = σi(h
′
i).

Definition 4 A perfect public equilibrium is a profile of public strategies
such that after every public history, each player’s continuation strategy is a
best reply to the opponents’ continuation strategy profile.

The repetition of a Nash equilibrium of the stage game is a perfect pub-
lic equilibrium, so that perfect public equilibria exist. Every perfect public
equilibrium is a sequential equilibrium: any consistent belief assigns proba-
bility one to the realized public history and thus correctly forecasts future
opponents’ choices.

3.3.1 The recursive structure

A perfect public equilibrium (PPE henceforth) is a profile of public strategies
that forms an equilibrium of the repeated game and such that, after every
public history, the continuation strategy profile is also a PPE. The set of
PPEs and the payoffs it induces therefore possesses a recursive structure, as
shown by Abreu, Pearce and Stachetti [APS90]. The argument is based on a
dynamic programming principle. To state the main result, we first introduce
some definitions.

Given a mapping f : Ypub → R
I , G(δ, f) represents the one-shot game

where each player i choose actions in Ai and where payoffs are given by:

(1 − δ)gi(a) + δ
∑

y∈Ypub

Q(y|a)fi(y)

In G(δ, f), the stage game is played, and players receive f(y) as an additional
payoff if y is the realized public signal. The weights 1−δ and δ are the relative
weights of present payoffs versus all future payoffs in the repeated game.

Definition 5 A payoff vector v ∈ R
I is decomposable with respect to the

set W ⊂ R
I if there exists a mapping f : Ypub → W such that v is a Nash
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equilibrium payoff of G(δ, f). Fδ(W ) denotes the set of payoff vectors which
are decomposable with respect to W .

Let E(δ) be the set of perfect public equilibrium payoffs of the repeated
game discounted at the rate δ. The following result is due to Abreu et al.
[APS90]:

Theorem 11 E(δ) is the largest bounded set W such that W ⊂ Fδ(W ).

Fudenberg and Levine [FL94] derive an asymptotic characterization of
the set of PPE payoffs when the discount factor goes to 1 as follows. Given
a vector λ ∈ R

I , define the score in the direction λ as:

k(λ) = sup 〈λ, v〉

where the supremum is taken over the set of payoff vectors v that are Nash
equilibrium payoffs of G(δ, f), where f is any mapping such that,

〈λ, v〉 ≥ 〈λ, f(y)〉 , ∀y ∈ Ypub

Scores are independent of the discount factor. The following theorem is due
to Fudenberg and Levine [FL94]:

Theorem 12 Let C be the set of vectors v such that for each λ ∈ R
I ,

〈λ, v〉 ≤ k(λ). If the interior of C is non-empty, E(δ) converges to C (for
the Hausdorff topology) as δ goes to 1.

Fudenberg, Levine and Takahashi [FLT07] relax the non-empty interior
assumption. They provide an algorithm for computing the affine hull of
limδ→1 E(δ) and provide a corresponding characterization of the set C with
continuation payoffs belonging to this affine hull.

3.3.2 Folk Theorems for public equilibria

The recursive structure of Theorem 11 and the asymptotic characterization
of PPE payoffs given by Theorem 12 are essential tools for finding sufficient
conditions under which every feasible and individually rational payoff is an
equilibrium payoff, i.e. conditions under which a Folk Theorem holds.

The two conditions under which a Folk Theorem in PPEs holds are a 1)
a condition of detectability of deviations and 2) a condition of identifiability
of deviating players.
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Definition 2 A profile of mixed actions s = (si, s−i) has individual full rank
if for each player i, the probability vectors (in the vector space R

Ypub)

{Q(·|ai, s−i) : ai ∈ Ai}

are linearly independent.

If s has individual full rank, no player can change the distribution of his
actions without affecting the distribution of public signals. Individual full
rank is thus a condition on detectability of deviations.

Definition 3 A profile of mixed actions s has pairwise full rank if for every
pair of players i 6= j, the family of probability vectors

{Q(·|ai, s−i) : ai ∈ Ai} ∪ {Q(·|aj, s−j) : aj ∈ Aj}

has rank |Ai| + |Aj| − 1.

Under the condition of pairwise full rank, deviations from two distinct players
induce distinct distributions of public signals. Pairwise full rank is therefore
a condition of identifiability of deviating players.

Fudenberg et al. [FLM94] prove the following theorem:

Theorem 13 Assume the set of feasible and individually rational payoff vec-
tors F has non-empty interior. If every pure action profile has individual full
rank and if there exists a mixed action profile with pairwise full rank, then
every convex and compact subset of the interior of F is a subset of E(δ) for
δ large enough.

In particular, under the conditions of the theorem, every feasible and indi-
vidually rational payoff vector is arbitrarily close to a PPE payoff for large
enough discount factors. Variations of this result can be found in [FLM94]
and [FL94].

3.3.3 Extensions

The public part of a signal The definition of perfect public equilibria
extend to the case in which each player’s signals consists of two components:
a public component and a private component. The public components of all
players’ signals are the same with probability one. A public strategy is then
a strategy that depends only on the public components of past signals, and
all the analysis carries through.
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Public communication Consider the case of general monitoring struc-
tures. In the public communication extension of the repeated game, players
make public announcements between any two stages of the repeated game.
The profile of public announcements then forms a public signal, and equilib-
rium characterizations follow from recursive analysis. Ben Porath and Kah-
neman [BPK96], Kandori and Matsushima [KM98], and Compte [Com98]
prove Folk Theorems in games with private signals and public communica-
tion.

Private strategies in games with public equilibria PPE payoffs do
not cover the full set of sequential equilibrium payoffs, even when signals
are public, as some equilibria may rely on players using private strategies,
i.e. strategies that depend on past chosen actions and past private signals.
See [MMS02] and [KO06] for examples. In a minority games, there is an odd
number of players, each player chooses between actions A and B. Players
choosing the least chosen (minority) action get a payoffs of 1, other players get
0. The public signal is the minority action. Renault et al. [RSS05], [RSS06]
show that, for minority games, a Folk Theorem holds in private strategies
but not in public strategies. Only few results are known concerning the set
of sequential equilibrium payoffs in privates strategies of games with public
monitoring, see Mailath and Samuelson [MS06] for a survey.

Almost public monitoring Some PPEs are robust to small perturba-
tions of public signals. Considering strategies with finite memory, Mailath
and Morris [MM02] identify a class of public strategies which are sequential
equilibria of the repeated game with imperfect private monitoring, provided
that the monitoring structure is close enough to a public one. They derive a
Folk Theorem for games with almost public and almost perfect monitoring.
Hörner and Olszewski [HO07] strengthen this result and prove a Folk The-
orem for games with almost public monitoring. Under the detectability and
identifiability conditions, they prove that feasible and individually rational
payoffs can be achieved by sequential equilibria with finite memory.

3.4 Almost perfect monitoring

Monitoring is almost perfect when each player can identify the action profile
of his opponents with near certainty. Almost perfect monitoring is the natural
framework to study the robustness of the Folk Theorem to small departures
from the assumption that actions are perfectly observed.

The first results were obtained for the Prisoner’s Dilemma. Sekiguchi
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[Sek97] shows that the efficient payoff can be approximated at equilibrium
when players are sufficiently patient and monitoring is almost perfect. Under
the same assumptions, Bhaskar and Obara [BO02], Piccione [Pic02] and Ely
and Valimaki [EV02] show that a Folk Theorem obtains.

Piccione [Pic02] and Ely and Valimaki [EV02] study a particular class of
equilibria called belief free. Strategies form a belief free equilibrium if, what-
ever player i’s belief on the opponent’s private history, the action prescribed
by i’s strategy is a best response to the opponent’s continuation strategy.

Ely, Hörner and Olszewski [EHO05] extend the belief free approach to
general games. However, they show that, in general, belief free strategies are
not enough to reconstruct a Folk Theorem, even when monitoring is almost
perfect.

For general games and with any number of players, Hörner and Olszewski
[HO06] prove a Folk Theorem with almost perfect monitoring. The strategies
that implement the equilibrium payoffs are defined on successive blocks of a
fixed length, and are block-belief-free in the sense that, at the beginning of
each block, each player is indifferent between several continuation strategies,
independently on his belief as to which continuation strategies are used by the
opponents. This result closes the almost perfect monitoring case by showing
that equilibrium payoffs in the Folk Theorem are robust to a small amount
of imperfect monitoring.

3.5 General Stochastic Signals

Besides the case of public (or almost public) monitoring, little is known about
equilibrium payoffs of repeated games with discounting and imperfect signals.

The Prisoner’s Dilemma game is particularly important for economic ap-
plications. Remarkably, it captures the features of collusion with the possi-
bility of secret price cutting, as in Stigler [Sti64].

When signals are imperfect, but independent conditionally on the pair
of actions chosen (a condition called conditional independence), Matsushima
[Mat04] shows that the efficient outcome of the repeated Prisoner’s Dilemma
game is an equilibrium outcome if players are sufficiently patient. In the
equilibrium construction, each player’s action is constant in each block. The
conditional independence assumption is crucial in that it implies that, during
each block, a player has no feedback as to what signals the other player has
received. The conditional independence assumption is non-generic: it holds
for a set of monitoring structures of empty interior.

Fong, Gossner, Hörner, and Sannikov [FGHS07] prove that efficiency can
be obtained at equilibrium without conditional independence. Their main
assumption is that there exists a sufficiently informative signal, but this signal
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needs not be almost perfectly informative. Their result holds for a family
of monitoring structures of non empty interior. It is the first result that
establishes cooperation in the Prisoner’s Dilemma with impatient players for
truly imperfect, private and correlated signals.

3.6 Punishment levels

Individual rationality is a key concept for Folk Theorems and equilibrium
payoff characterizations. Given a repeated game, define the individually
rational (IR) level of player i as the lowest payoff down to which this player
may be punished in the repeated game.

Definition 6 The individual rational level of player i is:

lim
δ→1

min
σ
−i

max
σi

Eσi,σ−i
[
∑

t
(1 − δ)δt−1gi,t]

where the min runs over profiles of behavior strategies for player −i, and the
max over behavior strategies of player i.

That is, the individually rational level is the limit (as the discount factor
goes to one) of the min max value of the discounted game6.

Comparison of the IR level with the min max With perfect monitoring,
the IR level of player i is player i’s min max in the one-shot game, as defined
by equation (1). With imperfect monitoring, the IR level for player is never
larger than vi since player i’s opponents can force down player i to v−i by
repeatedly playing the min max strategy against player i.

With two players, it is a consequence of von-Neumann’s min max theorem
[vN28] that vi is the IR level for player i.

For any any number of players, Gossner and Hörner [GH06] show that vi

is equal to the min max in the one-shot game whenever there exists a garbling
of player i’s signal such that, conditionally on i’s garbled signal, the signals of
i’s opponents are independent. Furthermore, the condition in [GH06] is also
a necessary condition in games with information structures. A continuity
result in the IR level also applies for monitoring structure close to the ones
satisfying the conditional independence condition.

The following example shows that, in general, the IR level can be lower
than vi:

6Other approaches, through unidiscounted games or limits of finitely repeated games,
yield equivalent definitions, see [GT06].
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Example 4

Consider the following three-player game. Player 1 chooses the row, player
2 the column and player 3 the matrix. Players 1 and 2 perfectly observe the
action profile while player 3 observes player 2’s action only. As we deal with
the IR level of player 3, we specify the payoff for this player only.

L R

T 0 0
B 0 −1

W

L R

−1 0
0 0

E

A simple computation shows that v3 = −1

4
and that the min max strate-

gies of players 1 and 2 are uniform. Consider the following strategies of
players 1 and 2 in the repeated game: randomize uniformly at odd stages,
play (T, L) or (B, R) depending on player 1’s previous action at even stages.
Against these strategies, player 3 cannot obtain better than −1

4
at odd stages

and −1

2
at even stages, resulting in an average payoff of −3

8
.

Entropy characterizations The exact computation of the IR level in
games with imperfect monitoring requires to analyze the optimal trade-off
for punishing players between the production of correlated and private signals
and the use of these signals for effective punishment. Gossner and Vieille,
[GV02] and Gossner and Tomala [GT06] develop tools based on information
theory to analyze this trade-off. At any stage, the amount of correlation
generated (or spent) by the punishing players is measured using the entropy
function. Gossner and Tomala [GT07] derive a characterization of the IR
level for some classes of monitoring structures. Gossner, Laraki, and Tomala
[GLT06] provide methods explicit computations of the IR level. In particular,
for the above example, the IR level computed and is about −.401. Explicit
computations of IR levels for other games are derived by Goldberg [Gol07].
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