
Abstract. We exhibit a general class of interactive decision situations in which
all the agents benefit from more information. This class includes as a special
case the classical comparison of statistical experiments à la Blackwell.
More specifically, we consider pairs consisting of a game with incomplete
information G and an information structure S such that the extended game
CðG;SÞ has a unique Pareto payoff profile u. We prove that u is a Nash
payoff profile of CðG;SÞ, and that for any information structure T that is
coarser than S, all Nash payoff profiles of CðG;TÞ are dominated by u. We
then prove that our condition is also necessary in the following sense: Given
any convex compact polyhedron of payoff profiles, whose Pareto frontier is
not a singleton, there exists an extended game CðG;SÞ with that polyhedron
as the convex hull of feasible payoffs, an information structure T coarser
than S and a player i who strictly prefers a Nash equilibrium in CðG;TÞ to
any Nash equilibrium in CðG;SÞ.
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1. Introduction

Blackwell’s theory of comparison of statistical experiments shows that for
single-agent decision problems, more information to the agent is always
better (see Blackwell (1951, 1953)). The formalization of similar ideas actually
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goes back to Ramsey, whose note on the topic has been recently published
(Ramsey (1990)). However, monotonicity of payoffs with respect to infor-
mation fails to hold in many cases. For instance Kadane, Schervish, and
Seidenfeld (1996) have shown that a Bayesian decision maker may rationally
pay not to see the outcome of a certain cost-free experiment, when only finite
additivity of the probability measures is assumed. Wakker (1988), Schlee
(1990, 1991), Safra and Sulganik (1995), Chassagnon and Vergnaud (1999)
among others have dealt with similar phenomena for decision makers whose
choice criterion is not the maximization of expected utility. Sulganik and
Zilcha (1997) have shown that information is not always beneficial if the
feasible set of actions depends on the signal and the information system.
Building on the work of Kreps and Porteus (1978), Grant, Kajii, and Polak
(1998, 2000) consider intrinsic preference for information, and provide
conditions for a dynamically consistent agent always to prefer more infor-
mative signals. Lehmann (1988) weakened Blackwell’s criterion for the
comparison of experiments. His idea has been used by Athey and Levin
(1998) and Persico (2000) to compare attitudes towards information in some
classes of models.

In the context of more than one decision maker, i.e. in game theory, the
negative value of information and its economic implications were examined
by Hirshleifer (1971). Kamien, Tauman, and Zamir (1990a, 1990b) consid-
ered games in which an outside agent can send signals to the players. The
effect of information was captured by the equilibria of the games induced by
these messages. Neyman (1991) emphasized the fact that more information to
a player cannot have a negative effect as long as other players are not aware
of it. Gossner (2000) compared information structures according to the cor-
related equilibrium distributions they induce in games with incomplete
information.

Recall the following simple instance of information rejection (see e.g.
Kamien, Tauman, and Zamir (1990)). A card is drawn at random from a
deck, and it can be either red or black, with equal probabilities. Player I
declares a color and player II listens to what player I says, and then declares a
color. If both players declare the same color, they get two dollars each.
Otherwise the player, whose declared color matches the color of the drawn
card, gets six dollars, and the other player gets zero. It is clear that, if the first
player gets to see the card before making her declaration, then her dominant
strategy is to declare the color of the drawn card. If it is common knowledge
that the first player saw the card before making her declaration, then the best
reply of the second player is to declare what the first player declared. The
equilibrium leads to a payoff profile of two dollars each. If the first player
does not get to see the card before making her declaration, and this is com-
mon knowledge, then any strategy is equivalent for her, and the dominant
strategy for the second player is to declare the other color. The equilibrium
expected payoff is three dollars each. In this game it is better for both players
that no information be made available to the first player.

The issue of negative value of information bears some analogy with the
following so-called Braess paradox (see e.g. Cohen and Kelly (1990), and
Bean, Kelly, and Taylor (1997)): In non-cooperative networks it is possible
that the addition of resources to the network is accompanied by a degrada-
tion of the performance. Korilis, Lazar, and Orda (1999) explained how the
paradox is due to the non-cooperative structure of the network and to the fact
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that in general Nash equilibria are not Pareto efficient. Furthermore they
found conditions under which the paradox cannot happen.

Although it seems that the typical situation in game theory is that the
‘expected payoff profile’ is not necessarily improved when agents get more
informed, we prove that under some conditions (which include as a special
case the one-agent maximization problem) the value of information is posi-
tive.

We consider a game with incomplete information and an information
structure such that the extended game possesses a unique Pareto payoff. We
remark that this Pareto payoff is necessarily a Nash payoff of this game, and
we show that every Nash payoff induced by any coarser information structure
is Pareto dominated by this payoff profile. The class of pairs (game and
information structure) that we consider is the one with the common interest
property of Aumann and Sorin (1989).

Vice versa we show that for any closed convex polyhedron D whose Pareto
frontier is not a singleton there exists an extended game such that the convex
hull of the set of its feasible payoffs is the above set D and the value of
information is not positive for at least one player. This provides a full
characterization of a property that we call positive value of information, and
shows that we cannot get rid of uniqueness of the Pareto payoff if we want to
be sure that information has a positive value.

Our condition on the pairs (game, information structure) is thus on the
set of feasible payoffs of the extended (normal form) game. Note that some
modifications of a game–like permutations of payoffs associated to out-
comes–would affect its set of equilibria, but not its set of feasible payoffs.
Our condition would then be unmodified under such a transformation.
Indeed, when a game admits a unique Pareto payoff, it becomes all player’s
incentives to reach this point, and these incentives do not depend on the
exact strategic form of the underlying game. Remark also that geometric
properties of the set of feasible payoff can be informative about the stra-
tegic properties of underlying game. For instance, with two players, if this
set is a line with negative slope, the corresponding game must essentially be
zero-sum.

2. Some examples

In this section we provide some examples exhibiting various effects of
information. Many more can be found in Bassan, Scarsini, and Zamir
(1997), from which these examples are drawn. Since we consider matrix
games, Nash equilibrium always exists (in mixed strategies). Typically, there
are several equilibria and there is no ‘‘obvious outcome’’ of the game. The
games that we consider are all solvable by iterative deletion of strictly
dominated strategies, thus we avoid all the difficulties that may rise due to
the existence of multiple Nash equilibria, and we use the expression ‘‘the
outcome of the game’’.

In all the following examples, nature chooses one of the two matrices
GA;GB with probability 1=2, the interpretation being that the state of nature is
either A or B with equal probabilities. If the state is A (respectively: B), the
payoff matrix is GA (respectively: GB). We shall refer to GA and GB as state-
games. The state-games are given in normal (strategic) form (the choices are
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made simultaneously). An entry ða; bÞ represents a payoff of a units to the row
player and b units to the column player.

Each example consists of four games corresponding to four different
information structures.

Example 1.

We refer to the rows as T (top) and B (bottom) and to the columns as L
(left) and R (right). The two matrixes are common knowledge, and so is the
fact that nature chooses one of them with probability 1=2. First of all notice
that in GA the top row, T , strongly dominates the bottom row, B, and the left
column, L, strongly dominates the right column, R. In GB the situation is
reversed: B strongly dominates T and R strongly dominates L. Therefore ð0; 0Þ
is the unique Nash equilibrium payoff in GA and ð�5;�5Þ is the unique Nash
equilibrium payoff in GB. From this it follows that, if, before the players make
their move, the state-game is revealed to both of them, they expect a payoff
equal to

1

2
ð0; 0Þ þ 1

2
ð�5;�5Þ ¼ ð�2:5;�2:5Þ:

If it is common knowledge that both players are uninformed about the state-
game that is being played, they act as if they were playing the game

In this game B strongly dominates T and R strongly dominates L. Therefore
the unique Nash equilibrium payoff is ð0; 0Þ.

If it is common knowledge that the state-game is revealed only to the row
player, then the column player will expect the row player to choose T in GA
and B in GB. Therefore the payoffs are (depending whether the column player
chooses L or R).

and

Hence she will have to choose left or right in the following row of expected
payoffs

The outcome of the game is now ð�8;�3:5Þ.

GA ¼

L R

T 0; 0 6;�3
B �3; 6 5; 5

GB ¼

L R

T �20;�20 �7;�16
B �16;�7 �5;�5

1

2
GA þ

1

2
GB ¼

L R

T �10;�10 �0:5;�9:5
B �9:5;�0:5 0; 0

L R
0; 0 6;�3 with probability 1=2;

L R
�16;�7 �5;�5 with probability 1=2;

�8;�3:5 0:5;�4

20 B. Bassan et al.



By using the symmetry of the games, we can see that, if only the column
player is informed, and this is common knowledge, then the outcome is
ð�3:5;�8Þ.

If we summarize these results in what we shall refer to as the I-U (In-
formed-Uninformed) matrix,

we immediately see that the situation in which both players are uninformed is
strongly preferred by both of them to all other three situations.

Example 2.

This example can be solved along the lines of the previous one, and it is
easily verified that the I-U matrix is

Information is good for both, if both have it, bad for both, if only one
has it. Put differently, the information of the two players is complementary
to each other. The reason for this complementarity, as can be seen from the
matrices, is that in order to take advantage of the knowledge about the state
of nature, they have to coordinate, and to do that they both have to know
the state.

3. A characterization result

We consider a set of agents I (with an abuse of notation we define I to be
f1; 2; . . . ; Ig), a probability space ðX;F; P Þ, a measurable mapping j from X
to some measurable space ðK;KÞ (the parameter set, or the set of states of
nature, which, as in Mertens, Sorin, and Zamir (1994) is fixed), and a family
ðSiÞi2I of sub r-fields of F. We call S ¼ ðX;F; ðSiÞi2I ;j; PÞ an information
structure. The r-field Si is interpreted as the information available to agent i.
To be precise the notation of S should include also ðK;KÞ, as S depends
also on ðK;KÞ. For the sake of simplicity we omit the indication of this
dependence, also because, as we said, it is assumed to be the same throughout
the paper.

GivenS ¼ ðX;F; ðSiÞi2I ; j; P Þ andT ¼ ðX;F; ðTiÞi2I ; j; PÞ, we say that
S is more informative for all players than T, and we write S �T, when
Si �Ti for all i 2 I . The set inclusion Si �Ti means that any subset of X

2-Inf 2-Uninf

1-Inf �2:5;�2:5 �8;�3:5
1-Uninf �3:5;�8 0; 0

GA ¼

L R

T 2; 2 �1;�6
B �6;�1 �2;�2

GB ¼

L R

T �20;�20 �5;�5
B �5;�5 2; 2

2-Inf 2-Uninf

1-Inf 2; 2 �1:5;�1:5
1-Uninf �1:5;�1:5 0; 0
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contained in the r-field Ti is contained also in the r-field Si. In other words,
whatever player i knows under Ti, she knows also under Si.

A game of incomplete information G is given by a family of measurable sets
ðAiÞi2I and by a measurable and bounded payoff function g : �i2I Ai� K ! RI .

An information structure S together with a game of incomplete infor-
mation (with the same state space K), defines an extended (Bayesian) game
CðG;SÞ. In this game, the set of strategies RS

i for player i is the set of Si-
measurable functions fi : X! Ai, and the payoff function is defined by the
relation g

S
fð Þ ¼ EP g ðf ð�ÞÞ; jð�Þð Þ, where f ¼ ðfiÞi2I . (The boundedness of g

is to ensure that the expectation is well defined.) Denote RS
i ¼ Xi2IR

S
i . Let

F ðG;SÞ denote the set of feasible payoffs of CðG;SÞ. Given two points x, y in
RI , we write y � x when for every i, yi � xi. The following definitions are
needed in the sequel.

Definition 3. We say that x (Pareto) dominates y if x � y. Given a subset B of
RI , we denote by PaðBÞ its Pareto frontier, namely,

x 2 PaðBÞ � B iff 6 9y 2 B such that y 6¼ x and y � x:

Definition 4. For a closed set B define coðBÞ its convex hull, and ExðBÞ the set
of the extreme points of coðBÞ.

Definition 5. A game CðG;SÞ has the positive-value-of-information property
(PVIP) if, whenever S �T, every Nash equilibrium payoff of CðG;TÞ is
dominated by a Nash equilibrium payoff of CðG;SÞ.

Our result of monotonicity of payoff with respect to information is the
following:

Theorem 6. Let D be a closed convex subset of RI with a finite number of
extreme points. Then the following are equivalent:

(i) All games CðG;SÞ such that F ðG;SÞ is closed and coðF ðG;SÞÞ ¼ D have
the PVIP,

(ii) PaðDÞ is a singleton.

Proof: First we prove that (ii) implies (i). Let PaðDÞ ¼ fvg, and let ðG;SÞ be
such that F ðG;SÞ is closed and coðF ðG;SÞÞ ¼ D.

Since F ðG;SÞ is closed, it contains all its extreme points, hence
v 2 F ðG;SÞ: v ¼ g

S
f0ð Þ for some f0 2 RS. Notice that f0 is a Nash equilib-

rium of CðG;SÞ: indeed, all feasible payoffs of CðG;SÞ are dominated by v.
Consider now T such that S �T. Remark that

� RT
i � RS

i , for all i 2 I , and
� for any f 2 RT, we have g

T
fð Þ ¼ g

S
fð Þ.

Hence all feasible payoffs (and in particular all Nash payoffs) of CðG;TÞ are
dominated by v.

Now we prove that not (ii) implies not (i), namely, that if PaðDÞ is not a
singleton, then there exists a game CðG;SÞ such that F ðG;SÞ is closed,
coðF ðG;SÞÞ ¼ D, and CðG;SÞ does not have the PVIP.
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Take K ¼ ExðDÞ, and define inductively for i 2 I ,

K0 ¼ K;

Ki ¼ fk 2 Ki�1 : 8h 2 Ki�1; ki � hig:
Points in Ki are thus the points in Ki�1 preferred by player i. By definition
Ki � Ki�1, and KI ¼ \iKi. Note also that two points in Ki have the same
i-coordinate, and hence also same j-coordinates for j � i. In particular, KI is
a singleton fag. Clearly a 2 PaðDÞ. In fact, if not, then there is c 2 K such that
c � a and c 6¼ a. Let i0 2 I be such that ci ¼ ai for all i < i0 and ci0 > ai0 . This
would imply a=2Ki0 , a contradiction.

To continue the proof we need the following

Lemma 7. There exists a game G0 of complete information with finite strategy
sets, with D as the convex hull of feasible payoffs, and with a as its unique Nash
payoff.

Proof: First, assume that for every i, Ki 6¼ Ki�1, and let ci 2 Ki�1 n Ki.
Let G0 be the game with complete information where player 1 chooses

k 2 K and all the other players choose either c (continue) or s (stop). Given a
strategy profile ðk; a2; � � � ; aIÞ; aj 2 fc; sg, the payoff is defined as follows:

(a) The payoff is k in each of the following cases:

� aj ¼ s; 8j 2 I n f1g,
� k ¼ a,
� k 2 K n K1.

(b) In all other cases, let m be such that k 2 Km�1 n Km (note that m � 2);
follow the following procedure starting at stage m	.
2	 If player 2 chooses s, the payoff is c2, if not go to 3	.
3	 If player 3 chooses s, the payoff is c3, if not go to 4	.
. . .
i	 If player i chooses s, the payoff is ci, if not go to ðiþ 1Þ	.
. . .
I	 If player I chooses s, the payoff is cI , if not it is a.

To see that the convex hull of the set of feasible payoffs of G0 is D, observe
that the payoff is always a point in K. Furthermore any point k 2 K is a
feasible payoff (obtained for example when 1 chooses k and all other players
choose s).

Now we show that a is the only Nash payoff of G0. In particular we prove
the following:

(A) For 2 � m � I and k 2 Km�1 n Km any strategy profile of the form
ða1; . . . ; aIÞ, with a1 ¼ k, a2; . . . ; am�1 2 fc; sg, am ¼ amþ1 ¼ � � � ¼ aI ¼ c,
is a Nash equilibrium, whose payoff is a.

(B) The profile ða1; . . . ; aIÞ with a1 ¼ a and a2; . . . ; aI 2 fc; sg is a Nash
equilibrium whose payoff is a.

(C) Any other strategy profile is not a Nash equilibrium.

First we prove (A). Clearly, such a strategy profile yields a payoff a. To see
that it is an equilibrium we observe the following:
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� Any player i such that 1 < i < m does not affect the payoff and hence has
no profitable deviation,

� A player i � m plays c. A deviation to s would yield an outcome ci, which
for her is worse than a, hence she has no profitable deviation.

� Player 1 receives the same payoff a1 for any choice k 2 K1 and any devi-
ation to k 2 K n K1 yields a lower payoff by definition of K1.

(B) is evident.

To prove (C), observe first that in any equilibrium player 1 has to choose
k 2 K1 since any other k is strictly dominated. Once player 1 has chosen
k 2 Km�1 n Km, for m � 2, players 2; . . . ;m� 1 are irrelevant and any player
i � m who chooses s receives a payoff ci which is worse for her than any
payoff she might get by playing c.

To finish the proof, in case there exist some players j such that Kj ¼ Kj�1,
we simply modify the game G0 above in such a way that the final payoff does
not depend on the actions chosen by those players. j

To continue the proof of ‘‘not (ii) implies not (i)’’, let b 2 ExðDÞ be a point
not dominated by a (such b exists since (ii) is not satisfied). Let i0 be a player
such that b 2 Ki0�1 n Ki0 .

We now define a a game G1 with incomplete information as follows:

� There are 4 states of the world, R1;R2;B1;B2, chosen with probabilities
p=2; ð1� pÞ=2; ð1� pÞ=2; p=2 respectively, with 0 < p < 1=2.

� In R1;R2 the state of nature is R while in B1;B2 the state of nature is B.
� Following the chance move choosing the state of the world (and the private

information given to the players), player i0 has to announce, publicly, the
state of nature (R or B). If i0 is right, G0 is played. If i0 is wrong, the
outcome is b.

In the information structure S, player i0 is informed of the digit 1; 2
appearing in the state of the world, (but not of letter R or B). In the (coarser)
information structure T, i0 receives no information about the state of the
world. All other players receive no information, both in S and in T.

We proceed to prove that CðG1;SÞ does not have the PVIP: In G extended
by S or T, player i0 has no strategy that ensures her to be wrong with
probability 1. Hence the probability that the subgame G0 is played is positive
for every strategy of i0. In particular, at all Nash equilibria of G1 extended by
S or T the outcome in the subgame G0 is a (the only Nash equilibrium of
G0). This is reached with positive probability.

Since bi0 < ai0 , player i0 prefers to be right than wrong. So in CðG1;SÞ she
will be right with probability ð1� pÞ while in CðG1;TÞ she will be right with
probability 1=2. It follows that

� in the game extended by CðG1;SÞ the only Nash payoff is ð1� pÞaþ pb,
� in the game extended by CðG1;TÞ the only Nash payoff is a=2þ b=2,
� since a does not dominate b, the payoff ð1� pÞaþ pb does not dominate

a=2þ b=2 and hence the game CðG1;SÞ does not have the PVIP.

The last stage of the proof is now to modify the game G1 to G2 so that
CðG2;SÞ also does not have the PVIP and coðG2;SÞ ¼ D.

With any strategy she may use, player i0 in ðG1;SÞ will be right with
probability ð1� pÞ, 1

2, or p. Hence
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F ðG1;SÞ ¼ fpbþ ð1� pÞKg [ f1
2
bþ 1

2
Kg [ fð1� pÞbþ pKg

Since b 2 K, this can be written as

F ðG1;SÞ ¼ fb; pbþ ð1� pÞKg [ fb; 1
2

bþ 1

2
Kg [ fb; ð1� pÞbþ pKg;

and so

coðF ðG1;SÞÞ¼ co cofb;pbþð1�pÞKg[cofb;1
2
bþ1

2
Kg[cofb;ð1�pÞbþpKg

� �

Since p < ð1� pÞ; 1=2 < ð1� pÞ,
cofb; ð1� pÞbþ pKg 
 cofb; pbþ ð1� pÞKg ¼ cofpbþ ð1� pÞKg;

and

cofb; 1
2

bþ 1

2
Kg 
 cofb; pbþ ð1� pÞKg ¼ cofpbþ ð1� pÞKg;

we conclude that

coðF ðG1;SÞÞ ¼ cofpbþ ð1� pÞKg ¼ pbþ ð1� pÞcoðKÞ ¼ pbþ ð1� pÞD:

Notice now that the PVIP is preserved under positive linear transformation of
the payoffs. Thus in the game G2 which is obtained from G1 by the positive
linear transformation of the payoffs:

x! x� pb
1� p

we have

� F ðG2;SÞ is closed (being finite) and coðF ðG2;SÞÞ ¼ D,
� CðG2;SÞ does not have the PVIP,

completing the proof of Theorem 6. j
The rationale of the part ‘‘(ii) implies (i)’’ of the theorem is that any

payoff that can be obtained under an information structure, can also be
obtained under an information structure which is more informative for all
agents (it’s enough to ignore the additional information). In this respect the
multi-agent situation does not differ from the one-agent case. What is dif-
ferent is that the property of being an equilibrium in general is not pre-
served when going to more informative information structures. This is the
origin of the many information paradoxes found in the literature. The
assumption of uniqueness of Pareto payoff under the richer information
structure is the key to avoid the paradoxes: More information accompanied
with a unique Pareto payoff does yield a ‘better’ outcome. It is clear that
our assumptions include in particular the case of one single player: In this
case the Pareto payoff is always unique. This is coherent with Blackwell’s
idea that more information is always better for a single decision maker.

The ‘‘not (ii) implies not (i)’’ part says that the uniqueness of the Pareto
payoff, albeit a strong property, cannot be disposed of, if we want to insure
PVIP. Whenever the Pareto frontier of D is not a singleton, we can always
construct a game and an information structure such that the convex hull of
the feasible payoffs in this extended game is D and for at least one player the
value of information is not positive.
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We note however that Theorem 6 is not a characterization of the games
having PVIP but rather of their feasible payoff set. That is, while the con-
dition is sufficient for a given game to have a PVIP, a game with PVIP may
have a feasible payoff set that does not satisfy this condition. Examples 10
and 11 at the end of the paper provide such games.

Remark 8. Theorem 6 would not hold with a stronger definition of PVIP
requiring that every Nash equilibrium payoff of CðG;SÞ dominates some Nash
equilibrium payoff of CðG;TÞ that is, the set of Nash set equilibrium payoffs
in CðG;SÞ is ‘‘above’’ the set of Nash equilibrium payoffs in CðG;TÞ. The
following is a counterexample.

Let, as usual, GA and GB be chosen by Nature with equal probabilities,
where

The game where both players are informed of the choice of Nature has,
among others, ð1; 1Þ as Nash payoff. The Pareto frontier of this game is the
singleton ð50; 50Þ.

The game where no player is informed is

This game has, among others, the following mixed-strategy Nash payoff
profile: ð50=11; 50=11Þ. This is also the lowest equilibrium payoff since 50=11
is the maxmin payoff for both players. Therefore the equilibrium payoff ð1; 1Þ
in the game where all players are informed does not dominate any equilibrium
payoff of the game where no player is informed.

4. More examples

In this section we will re-examine the examples introduced in Section 2, and
provide more examples to illustrate the strength of Theorem 6. In particular
we will show that the structure of the Pareto frontier of the payoff set was
quite extreme in Examples 1 and 2: In one case it is never a singleton and in
the other it is a singleton only when everybody is informed. Then we will
provide a new example where the Pareto frontier is a singleton only when one
player (but not the other) is informed. Finally we will introduce some
examples that show why the result about PVIP had to be stated in terms of
classes of games having the same convex hull of feasible payoffs, and does not
hold for single games.

In Example 1 the Pareto frontier of the payoff set is not a singleton when
both players are informed (it contains ð0:5;�4Þ; ð0; 0Þ; ð�4; 0:5Þ). It is not a

GA ¼
50; 50 0; 0 0; 0

0; 0 9; 9 0; 10

0; 0 10; 0 1; 1

GB ¼
50; 50 0; 0 0; 0

0; 0 1; 1 10; 0

0; 0 0; 10 9; 9

G ¼
50; 50 0; 0 0; 0

0; 0 5; 5 5; 5

0; 0 5; 5 5; 5
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singleton when only one player is informed (for instance, when the row player
is informed it contains ð0:5;�4Þ; ð0; 0Þ). It follows that none of the games with
additional information satisfy the sufficient condition for PVIP. In this
example the value of information is always negative.

In Example 2 when both players are informed the Pareto frontier is a
singleton fð2; 2Þg. It is not a singleton when only one player is informed,
which shows why the value of information is positive when both players are
informed, but not when only one of them is.

To complete the picture, in the next example we consider a game
where, if only one player is perfectly informed, then there exists a unique
Pareto payoff profile, therefore, by Theorem 6, any coarser information
structure is worse. However, when both players are perfectly informed
uniqueness of the Pareto payoff profiles does not hold, and information
does not make the players better off. Theorem 6 states that when an ex-
tended game has a unique Pareto optimal payoff, then the equilibria of an
analogous game with a coarser information structure are (weakly) domi-
nated. The following example shows that, if uniqueness of the Pareto
optimal payoff happens at an intermediate level of information disclosure,
then both coarser and finer information structures can produce dominated
equilibrium payoffs.

Example 9. Consider a two player game in which player 1 chooses the row,
player 2 chooses the column, and the payoff matrix is one of the two with
equal probabilities: In state k ¼ 1 the payoff matrix is

and in state k ¼ 2 the payoff matrix is

where c is a very large parameter (e.g. 106), and k 2 ½0; 100�.
Note that if a player is not informed of the state of nature, P (passive) is

a strictly dominating action in the expected game. Hence, if no player is
informed of k, the only equilibrium yields ð�5;�5Þ.

N N2 F 1 F 2 P

N1 0; 0 �c;�c �5; k �c;�c 10; 10

N2 �c;�c �2c;�2c �c;�c �2c;�2c �c;�c

F 1 k;�5 �c;�c 0; 0 �c;�c 0;�10
F 2 �c;�c �2c;�2c �c;�c �2c;�2c �c;�c

P 10; 10 �c;�c �10; 0 �c;�c �5;�5

N1 N2 F 1 F 2 P

N1 �2c;�2c �c;�c �2c;�2c �c;�c �c;�c

N2 �c;�c 0; 0 �c;�c �5; k 10; 10

F 1 �2c;�2c �c;�c �2c;�2c �c;�c �c;�c

F 2 �c;�c k;�5 �c;�c 0; 0 0;�10
P �c;�c 10; 10 �c;�c �10; 0 �5;�5
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Now assume that it is common knowledge that only one player, say the
row player, is informed of k. It is still a dominating action for the column
player to play P (even when the row player chooses different actions in the
two states). Hence the best response of the row player is to play Nk (for Nice
in state k) in state k. This yields an equilibrium payoff of ð10; 10Þ, which is the
only Pareto optimum.

Finally, assume both players are informed. Playing Nk or Fk in state 3� k
is dominated by any other action, hence the game reduces to:

where N and F stand for ‘‘play Nk (or Fk) in state k’’. We shall distinguish the
cases k > 10 and k < 10.

If k > 10, P is dominated by F (fight) for both players and once P has been
deleted F also dominates N . The only equilibrium yields ð0; 0Þ. Notice, in
particular, that the strategy profile ðNk; P Þ yielding the unique Pareto payoff
ð10; 10Þ with only one player fully informed, is no longer an equilibrium.

If k < 10, the pure equilibria are ðP ;NÞ, ðN ; P Þ with payoff ð10; 10Þ and
ðF ; F Þ with payoff ð0; 0Þ. There are also mixed equilibria.

Let us now examine the shape of the Pareto frontier in these two cases:
k > 10 and k < 10.

The above example shows the extent of application for our result. The
equilibrium payoffs are not monotone in the information when k > 10. The
equilibrium payoffs are ð0; 0Þ when both players are informed, and ð10; 10Þ
when only one is. The information structure corresponding to public perfect
information does not lead to a unique Pareto payoff, and this explains the
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Fig. 1. The set of feasible payoffs in Example 9 when k < 10

N F P

N 0; 0 �5; k 10; 10

F k;�5 0; 0 0;�10
P 10; 10 �10; 0 �5;�5
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non-monotonicity. On the other hand the information structure that corre-
sponds to one-sided information leads to a unique Pareto payoff, namely
ð10; 10Þ. If X is rich enough, it is possible to build on it some partial infor-
mation structures by means of some signaling devices, with different corre-
lations between the signal and the state. The higher the correlation, the better
the information. Our theorem guarantees that any one-sided partial infor-
mation structure (obtained for instance by signaling) for only one player
cannot improve the equilibrium payoff with respect to the situation where one
player is perfectly informed and the other one is uninformed.

On the other hand, when k < 10, the Pareto frontier when both players are
informed does reduce to a single point, even if there are multiple equilibria (in
particular there is more than one equilibrium yielding the Pareto payoff). In
this case, both players being informed is at least as good as any other
information structure, in particular it is (weakly) better than if both players
are only partially informed.

The final examples aims at showing why the characterization of Theo-
rem 6 has to be given in terms of payoff sets.

Example 10. As in the games of Section 2, Nature chooses GA or GB with
probability 1=2.

Under the information structure S, where player 1 is informed, the only
Nash payoff is ð1; 1Þ. Under the information structure T, where player 1 is
not informed, the only Nash payoff is ð0:5; 0:5Þ.
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Fig. 2. The set of feasible payoffs in Example 9 when k > 10

GA ¼
�1; 2 �1; 3
0; 0 0; 0

1; 1 1; 1

GB ¼
�1; 3 �1; 2
1; 1 1; 1

0; 0 0; 0

Positive value of information in games 29



Hence the I-U matrix is

Therefore the value of information under S is positive even if in this case
the Pareto frontier is not a singleton (it contains ð�1; 3Þ; ð1; 1Þ).

Example 11. Let

Top and Left are dominant strategies in the state-games GA and GB, and also
in 1

2 GA þ 1
2 GB. Hence ð2; 2Þ is the only Nash payoff in all information struc-

tures (zero, one or two players informed about the state of Nature). However,
the Pareto frontier is never a singleton, and in particular in the case of full
information it contains the points ð5; 5Þ; ð5:5; 1Þ and ð1; 5:5Þ.

Thus, the game has the PVIP but PaðDÞ is not a singleton.
The above examples show that it is not true that having a unique Pareto

feasible payoff under a certain information structure is necessary for the value
of information to be positive. What is true is that for every closed convex set
whose Pareto frontier is not a singleton, we can always build a game of
incomplete information with that set as payoff set where the value of infor-
mation is not positive.
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