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Abstract

We characterize the max min of repeated zero-sum games in which player one plays
in pure strategies conditional on the private observation of a fixed sequence of random
variables. Meanwhile we introduce a definition of a strategic distance between probability
measures, and relate it to the standard Kullback distance.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In the game ofmatching pennieswhere the payoff of player one is given by
the matrix

Heads Tails

Heads 1 0

Tails 0 1

the unique optimal strategy of each player is to toss a fair coin, and to play
according to the outcome:Headsif the coin turnsHeads, andTails otherwise.
Consider a repetition of matching pennies in which player one (the maximizer)
can only condition his actions on the privately observed outcome of a biased coin,
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whose parameterp is common knowledge. Prior to each round of play, he gets to
observe a toss which is independent of previous tosses and has to choose a (pure)
action. We study the optimal strategies of player one and the corresponding value,
namely the maxmin of that repeated game.

An obvious way to play is for player one to choose in any round an action
according to the toss inthat round. This strategy secures min(p,1 − p) in the
long run. We show that player one can actually do much better: the maxmin
of the infinitely repeated game exists and is equal to half the entropyH(p) =
−p ln2p− (1− p) ln2(1− p) of the distributionp = (p,1− p).

The game of matching pennies has specific features which make the proof a
bit ad hoc(for instance, the unique optimal strategy in the one-shot game is the
mixed action with maximal entropy). For the general case of a zero-sum gameG,
defineU(h) as the maximum that player one can guarantee inG when restricted
to mixed actions of entropy at mosth. Let cavU denote the smallest concave
function that majorizesU . Assume that the sequence of private observations is
i.i.d. (we shall argue that this assumption can be weakened to a great extent). We
prove that the maxmin of the corresponding infinitely repeated game is cavU(h)

whereh is the entropy of any private observation.
Tools borrowed from information theory, such as entropy or relative entropy,

already found several applications into the literature of repeated games with
bounded complexity. In a model of repeated games with stationary bounded
memory, Lehrer (1994) makes use of mutual entropy as a measure of the
information that a player’s memory may contain about other player’s strategies.
Neyman and Okada (1999) introduce strategic entropy as a measure of the
randomness contained in a player’s strategy, and deduce bounds on the values
of repeated games played by finite automata. Lehrer and Smorodinsky (2000)
provide sufficient conditions for convergence of learning processes that are
phrased in terms of the relative entropy between a utility maximizer’s belief on
the sequence of nature’s moves and its true probability distribution. Our result is
close in flavor to those of Neyman and Okada (2000). They proved that if player
one can chooseanystrategy of per stage entropyh, then the maximum that player
one can guarantee is cavU(h). We thus obtain a similar result without assuming
that player one can choose the stream of random variables on which his strategies
can be conditioned. We essentially show that a player can approximate (through
a deterministic coding)any strategy of per stage entropyh from any stream of
random variables of per stage entropyh. We introduce the notion ofstrategic
distancebetween two random variables as the appropriate measure for the quality
of this approximation, and relate this notion with the classical Kullback distance.
Shannon (1948) studied the question of coding information into the smallest
sequence of bits (0s and 1s) as possible. The optimization problem we study is
somehow dual since player one needs to use his random information during as
much time as possible.
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The paper is organized as follows. Section 2 contains the model and the
statement of the results. Section 3 is a short reminder of basic properties of
conditional entropy. In Section 4, we constructε-optimal strategies of player one,
in the game of matching pennies. We introduce the strategic distance and relate it
to the Kullback distance in Section 5. Using this, we constructε-optimal strategies
for player one in the general case in Section 6. Section 7 deals with replies of
player two in the general case. The model of bounded rationality we study may
seem somehow unnatural and isolated from classical problems of game theory.
In fact, we connect it with problems arising in repeated games with imperfect
monitoring in Section 8.

2. Model and results

2.1. The repeated game—maxmin

A two player zero-sum gameG given by finite sets of actionsA andB for
player one and player two and a payoff functiong :A×B → R is fixed. We study
repetitions ofG in which player two’s strategy choice is unrestricted whereas
player one privately observes the successive realizations of a sequence of i.i.d.
random variables, but has to play a pure strategy.

Our aim is to study how the maxmin of the infinitely repeated game depends
on the characteristics of this private source of uncertainty. Thus, we may and do
consider only pure strategies for player two.

The repeated gameG∞ proceeds as follows. We letX = (Xn)n�1 be
a sequence of i.i.d., random variables, each with lawp, with values in a finite
setC. In each stagen � 1, player one gets to observeXn; players one and two
choose actions; these are publicly announced, and the game proceeds to stage
n+ 1. The description of the game is common knowledge.

Given the monitoring assumptions, the behavior of player one in stagen

is described by a functionσn : (C × A × B)n−1 → A. A strategy of player
one is a sequenceσ = (σn)n�1 of such maps. Similarly, a strategy of player two
is a sequenceτ = (τn)n�1, with τn : (A×B)n−1 → B.

Any profile (σ, τ ) (together withX) induces a probability distributionPσ,τ on
the set of playsH = (A×B)N endowed with the product of discreteσ -algebras.
Expectation with respect toPσ,τ is denoted byEσ,τ .

We denote byan, bn the (random) actions of the players in stagen, and
set gn = g(an,bn). Notice that, onceσ and τ are fixed,an and bn are simply
functions of the random sequenceX (more precisely,an depends on the firstn
components ofX, andbn on the firstn−1 components, through player one’s past
play). Thus,Pσ,τ (an = a)= P(x,an(x)= a).
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The expected average payoffγn for player one up to stagen is

γn(σ, τ )= Eσ,τ

[
1

n

n∑
m=1

gm

]
.

We recall the standard definition of the maxmin.

Definition 1. Let v ∈ R.

• Player 1 can securev if, for everyε > 0, there exists a strategyσε , and a stage
N � 1 such that:

∀τ,∀n�N, γn(σε, τ )� v− ε.

• Player two can defendv if, given anyσ andε > 0, there exists a strategyτε
and a stageN � 1 such that

∀n�N, γn(σ, τε)� v + ε.

• v is the maxmin of the game if player one can securev, and player two can
defendv.

2.2. Main result

In order to state our main result, we need to recall the definition of entropy. If
q is a distribution over a finite setΩ , the entropy ofq is

H(q)= −
∑
ω∈Ω

q(ω) log
(
q(ω)

)
,

where the logarithm is taken to be in base 2, and 0 log0= 0 by convention. For
h� 0, we letU(h) be the maxmin of the (one-shot) game in which player one is
restricted to mixed actions of entropy at mosth

U(h)= max
H(x)�h

min
b

Exg(·, b)
Finally, recall that the concavification cavu of a real mappingu defined on

a convex set is the least concave function which majorizesu.

Theorem 2. ThemaxminofG∞ is cavU(H(p)).

The proof of the theorem is organized as follows: We need to prove both that
player one can securev and that player two can defendv. The most difficult part
of the proof is the construction ofε-optimal strategies of player one. We construct
such strategies for the game of matching pennies in Section 3. Next, we introduce
some tools in Section 4, that we use in Section 5 to deal with general zero-sum
games. That player two can defendv is a consequence of a previous analysis by
Neyman and Okada (2000), we provide a proof for the sake of completeness in
Section 6.
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Fig. 1.

2.3. Example: matching pennies

In the game of matching pennies,A = {T ,B}, B = {L,R} and the payoff to
player one is given by the array

L R

T 1 0

B 0 1

AssumeC = {0,1} andp(1)= p (the sequenceX is {0,1}-valued).We seth(p)=
H(p). It is well known thath is a continuous, increasing, concave, bijective
function from[0,1/2] to [0,1]. Moreover,h(p)= h(1 − p), for eachp. Denote
by h−1 : [0,1] → [0,1/2] the inverse map:h being concave,h−1 is convex.

Here,U(h(p))= min{p,1−p}, which is the payoff player one guarantees by
playing eitherpT + (1 − p)B or (1 − p)T + pB. Thus,U(x)= h−1(x). Given
the properties ofh−1, cavU(x)= x/2. Theorem 2 shows that the maxmin ofG∞
exists and is equal to(1/2)H(p).

The two graphs (see Fig. 1) above show visually that cavU(h(p)) =
(1/2)h(p). Clearly,U(h(p)) is concave inp whereas it is a convex function
of h(p).

3. Conditional entropy

The entropy of a random variable is usually seen as a good measure of the
uncertainty contained in it, or of the amount of information gained by observing
it. By definition, the entropyH(Y) of a random variableY with finite range is the
entropy of its distribution.

Let (Y1, Y2) be a random vector with values in a finite setΩ1 × Ω2, with
distributionq. Forω1 ∈Ω1, denote byq(·|ω1) the conditional distribution ofY2,
givenY1 = ω1 and byh(Y2|ω1) the entropy ofq(·|ω1)

h(Y2|ω1)= −
∑
ω2∈Ω2

q(ω2|ω1) logq(ω2|ω1).
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Theconditional entropyof Y2 givenY1 is defined to be

H(Y2|Y1)=EY1

[
h(Y2|Y1)

]=
∑
ω1

q(ω1)h(Y2|ω1).

It is the average uncertainty on the value ofY2, given that one observesY1.
An easy computation shows that

H(Y1, Y2)=H(Y1)+H(Y2|Y1), (1)

where H(Y1, Y2) is the entropy of the variable(Y1, Y2). If (Y1, . . . , Yn) is
a random vector with finite rangeΩ1×· · ·×Ωn, the relation (1) yields inductively

H(Y1, . . . , Yn)=H(Y1)+
n∑
i=1

H(Yi |Y1, . . . , Yi−1). (2)

Notice that, ifY1, . . . , Yn are i.i.d. variables,H(Y1, . . . , Yn) = nH(Y1). Finally,
remark that for anyY with finite rangeΩ , and any functionf :Ω → Θ,
H(f (Y ))�H(Y).

4. To guarantee: matching pennies

We construct anε-optimal strategy for player one in the game of matching
pennies, assumingC = {0,1}. We shall show that what is optimal for player one
is not to use his private endowment of uncertainty at aconstantrate, but rather to
accumulateit for a while, and use it to play in themostunpredictable way.

Fix ε > 0. We design a strategyσ of player one that depends on a parameter
η > 0. We shall prove that, providedη is small enough,σ guarantees12H(p) up
to ε: there existsN , such that, for everyτ andn�N ,

γn(σ, τ )�
1

2
H(p)− ε, (3)

whereσ is defined by blocks of lengthl (l function ofη). Underσ , player one’s
play is independent of player two’s past play. Moreover, oneachblock, it is
independent of theplay in the past blocks; it depends only on the signals received
by player one in the previous block (it plays repeatedlyT in the first block).

Denote byP =⊗
N

p the distribution over{0,1}N induced by a sequence(xn)
of i.i.d. variables, distributed according top. For simplicity, we writeH forH(p).

Chooseη > 0 such thatH + η is a rational number. Define atypical sequence
of lengthn to be a sequencex ∈ {0,1}n, such that

1

2n(H+η) � P(x)� 1

2n(H−η) .

Let C(n,η) be the set of typical sequences of lengthn. All typical sequences
have roughly the same probability. The next lemma is known as the asymptotic
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equipartition property in information theory. It asserts that the probability of the
set of typical sequences goes to 1 asn goes to infinity. We refer to Cover and
Thomas (1991) for proofs and comments.

Lemma 3. ∀η > 0, limn→∞ P(C(n,η))= 1.

Note. We shall later prove a stronger version of this result (Lemma 9) where we
provide an estimate ofη relative ton. This stronger result will be useful for the
general zero-sum case, but Lemma 3 is sufficient for our proof in the case of
matching pennies.

We choose the lengthl of the blocks so thatP(C(l, η)) � 1 − η and l(H +
η) ∈ N. We defineσ on a single blockb � 2, and consider that, at the beginning
of that block, player one has a private signalx, drawn from{0,1}l according toP.

SinceP(x)� 1/2l(H+η), for x ∈ C(l, η), the cardinality ofC(l;η) is at most
2l(H+η). Therefore, there exists a one-to-one mapi :C(l, η)→ {T ,B}l(H+η).

Defineσ as:

• if x ∈C(l, η), play the sequencei(x) of actions in the firstl(H + η) stages of
the block, then repeatedlyT ;

• if x /∈ C(l, η), play repeatedlyT .

Notice that in the lastl − l(H + η) stages, player one plays repeatedlyT ;
a best reply of player two will obviously be to playR in those stages, yielding a
payoff of 0 to player one. We argue below that in the firstl(H + η) stages, player
one’s behavior is essentially unpredictable: in most of the stages, the distribution
of player one’s action, conditional on his past actions, is close to(1/2,1/2) (with
high probability). We prove this formally.

For simplicity, we (re)label the stages of blockb from 1 to l. We denote by
a = (a1, . . . ,al(H+η)) the sequence of actions played by player one in the first
part of the block. We also setT = (T , . . . , T ) (sequence of lengthl − l(H + η)).
We first prove that the entropy ofa is almost maximal.

Lemma 4. One hasH(a)� l(H − 3η).

Proof.

H(a) = −
∑

a∈{T ,B}l(H+η)
P(a = a) log

(
P(a = a)

)
= −

∑
a �=T

P(a = a) log
(
P(a = a)

)− P(a = T) log
(
P(a = T)

)
� −

∑
x∈C(l;η)
i(x) �=T

P(x) log
(
P(x)

)
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� l(H − η)

(
P
(
C(l;η))− 1

2l(H−η)

)
� l(H − η)(1− 2η)

� l(H − 3η).

The second inequality uses the fact that− logP(x) � l(H − η) holds for every
x ∈ C(l, η), and the fact thatat mostone sequencex ∈ C(l, η) is mapped toT,
the probability of this sequence being at most 1/2l(H−η). The last two inequalities
are valid, providedη is small enough. ✷
Lemma 5. For everyε > 0, there existsη0 > 0 such that for everyη < η0 and
everyτ

Eσ,τ

[
1

l

l∑
n=1

gn

]
� 1

2
H − ε.

Thus, the expected average payoff on any block (except the first one) is at least
H/2− ε, providedη is small enough. This clearly implies (3), and concludes the
proof that player one can guarantee(1/2)H(p).

Proof. We give an estimate of

α = min
τ

Eσ,τ

[
1

l

l∑
n=1

gn

]
.

Denote bypn = (pn,1 − pn) the conditional distribution ofan, conditional on
a1, . . . ,an−1: it is the belief held by player two in stagen over player one’s next
action, given player two’s information (and knowing player one’s strategy). Since
player one’s behavior is independent of player two’s play, it is a best reply of
player two toσ to playL wheneverpn � 1

2, andR otherwise. This yields a payoff
of min(pn,1−pn) in stagen.

Therefore,

α = Eσ

[
1

l

l∑
1

min(pn,1− pn)

]
.

Forn > l(H + η), pn = 1,Pσ -a.s.; player one playsT in these stage, irrespective
of x. Thus,

α = (H + η)Eσ

[
1

l(H + η)

l(H+η)∑
1

min(pn,1− pn)

]
.
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Notice that min(p,1 − p) = h−1(H(p)), where h−1 has been defined in
Section 2.3. Thus,

α = (H + η)Eσ

[
1

l(H + η)

l(H+η)∑
1

h−1(H(pn))]

� (H + η)h−1

(
Eσ

[
1

l(H + η)

l(H+η)∑
1

H(pn)

])

= (H + η)h−1

(
1

l(H + η)

l(H+η)∑
1

H(an|a1, . . . ,an−1)

)

= (H + η)h−1

(
1

l(H + η)
H(a)

)
.

The first inequality is obtained by applying Jensen’s inequality to the convex
function h−1. The second one uses the fact that the conditional entropy
H(an|a1, . . . ,an−1) is defined asEσ (H(pn)). The last one is a consequence of
the property (2) of conditional entropies.

Using Lemma 4, one deduces thatα � (H + η)h−1(1 − 4η/H). Since
h−1(1) = 1/2, one getsα � H/2 − ε, provided η has been chosen small
enough. ✷

5. Tools for the general case

In order to prove our main result in the general case, we first develop here
a number of tools. The general idea of our construction is that, by properly
encoding his private information, player one tries to mimic some strategy (the
optimal strategy in the case of matching pennies). It is therefore crucial to have a
measure of the quality of the approximation. We shall define such a measure, the
strategic distance between two probabilities over sequences of moves.

5.1. The extra difficulties

One feature of matching pennies that made its analysis simple is that the
unique optimal strategy of player one is the distribution with maximal entropy,
the uniform distribution(1/2,1/2). Assume that player one selects his moves
over a block of lengthn according to the distributionP ∈∆({T ,B}n) which has
an entropy close to the maximal entropyn. In the case of matching pennies, we
could deduce the two facts:

• First, it must be the case that at almost every stage, the entropy of player one’s
move conditional to his past moves on this block must be almost maximal.
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• Second, if the entropy conditional to the past moves is close to the
maximal one, then the corresponding probability conditional to player two’s
information must be close to(1/2,1/2).

We could then conclude that player two could not do much better on average
than 1/2 over that block. In that senseP is a good approximation of the optimal
strategy of player one in then-stage matching pennies.

We need to elaborate on this. LetG be any zero-sum game, with action setsA
andB, and payoff functiong, which is being playedn times. Assume that player
1 wishes to mimic the distributionQ ∈∆(An), and selects its moves according to
P ∈∆(An) (bothP andQ may be viewed as mixed strategies, which put positive
probabilities only on pure strategies which are independent of player two’s play).

We define a measure of how good the approximation ofQ by P is, suited
to game-theoretic purposes. It is clear that this measure cannot be defined as
the difference between the entropies ofP and Q. First, P and Q can have the
same per stage entropy but have different entropies for a given stage and a given
past history. Second, even in a one-stage game, two strategies can have the same
entropy and guarantee different payoffs. Indeed, in the gameG defined by

2 0

0 1

the two strategies(1/3,2/3) and(2/3,1/3) have the same entropy. The former is
optimal and guarantees 2/3, while the latter guarantees only 1/3.

5.2. Strategic distance

Recall thatP,Q ∈ ∆(An). Let k ∈ {1, . . . , n}. At stagek, given player one’s
past playhk , the difference between whatP andQ secure can be estimated by∣∣∣min

b
g
(
Q(·|hk), b

)− min
b
g
(
P(·|hk), b

)∣∣∣�M
∥∥P(·|hk)− Q(·|hk)

∥∥
1, (4)

whereM = 2 maxA×B |g|, and‖ · ‖1 is theL1-norm onR
A.

Thus, as for stagek, a good measure of the approximation is given by

EP
[∥∥P(·|Hk)− Q(·|Hk)

∥∥
1

]
,

which we write‖P(·|Hk) − Q(·|Hk)‖1,P (Hk being the algebra generated by
player one’s play in the firstk − 1 stages).

This motivates the following definition.

Definition 6. Let A be a finite set,n ∈ N, and P,Q ∈ ∆(An). The strategic
distance fromP to Q is

dS(P‖Q)= 1

n

n∑
k=1

∥∥P(·|Hk)− Q(·|Hk)
∥∥

1,P.
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Remark. This definition depends onG only through the action set of player
one,A.

Remark. Beware that the strategic distance is not a distance, since it is not
symmetric. The same abuse of language is common when speaking of the
Kullback distance (see below).

Notation. Forn ∈ N, andP ∈∆(An), we set

v(P)= min
b∈Bn

1

n
EP

(
n∑
k=1

g(ak, bk)

)
.

Notice thatv(P) is the amount secured byP in then-stages version ofG. For
n= 1 andp ∈∆(A), the above notation particularizes tov(p)= minb Epg(a, b).
The lemma below is a straightforward consequence of the inequality (4).

Lemma 7. LetM = 2 maxA×B |g|. For everyP,Q ∈ ∆(An), with Q = q⊗n for
someq ∈∆(A) one has∣∣v(P)− v(Q)

∣∣�MdS(P‖Q).

5.3. Comparison of the strategic and Kullback distances

Let S be a finite set. Denote byΩ the set of(p,q) ∈ ∆(S)×∆(S) such that
p � q: q(s)= 0 ⇒ p(s) = 0. The Kullback distance betweenp andq is defined
as

d(p‖q)= Ep log
p(s)
q(s)

=
∑
s∈S

p(s) log
p(s)
q(s)

,

with 0 log 0
0 = 0 by convention.

We shall construct strategies of player one which induce probabilities over
action sequences which are close for Kullback distance to some fixed probability.
In order to state that the payoffs guaranteed are also close, we shall rely on the
following proposition, the proof of which is postponed to Appendix A.

Proposition 8. Let(nk)k be a sequence of positive integers, and considerPk,Qk ∈
∆(Ank ) such that

lim
k→∞

1

nk
d(Pk‖Qk)= 0;

then

lim
k→∞dS(Pk‖Qk)= 0.
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5.4. A stronger version of the asymptotic equipartition property

The asymptotic equipartition property (Lemma 3) does not provide the rate of
convergence ofP(C(η,n)). We shall use the following lemma.

Lemma 9. For everyε > 0, there existsK > 0 such that

∀n > 0, P
(
C

(
K√
n
,n

))
� 1− ε. (5)

Proof. Let us writex = (xt )1�t�n. Note thatx ∈ C(η,n) if and only if∣∣logP(x1, . . . ,xn)+ nh
∣∣� nη.

Observe that logP(x1, . . . ,xn)=∑n
1 logp(xt ) has mean−nh, by definition ofh

and variancenV 2 whereV 2 is the variance of logp(x1). Tchebytchev’s inequality
yields directly

P
(
x /∈C(η,n))� V 2

nη2
.

Hence the result withK = V/
√
ε. ✷

6. To guarantee: the general case

In this section we prove that player one can guarantee cavU(H(p)), whatever
be the underlying one-shot game. For simplicity, we seth = H(p). We start by
recalling two general well-known properties of the cav operator.

Remark 10. For any mappingu, an equivalent definition of cavu is

cavu(x)= sup
1�λ�0

x=λx1+(1−λ)x2

λu(x1)+ (1− λ)u(x2), (6)

wherex, x1, andx2 are restricted to be in the domain ofu.

Remark 11. If u is continuous, the supremum can be taken over any relatively
dense subset of{(λ, x1, x2): 1 � λ� 0, x = λx1 + (1− λ)x2}.

Since U is clearly continuous, we need only prove that player one can
guarantee

max
{1�λ�0: h=λhL+(1−λ)hR}

λU(hL)+ (1− λ)U(hR), (7)

where we impose thatλ, hL/h andhR/h be rational numbers. That we shall
prove as Proposition 12.
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Proposition 12. LethL, hR , andλ be given. Assume thathL/h,hR/h, andλ are
rational numbers, andh= λhL + (1− λ)hR . LetpL andpR be mixed actions in
the one-shot game, such thatH(pL)= hL,H(pR)= hR .

Then player one can guaranteeλv(pL)+ (1− λ)v(pR).

Proof. Let us briefly sketch the idea of the construction.
As for matching pennies, anε-optimal strategyσ is defined by blocks

of length l, and it uses on a given block only the private signals received
during the previous block. The idea is to divide this stream of signals into two
subsequences. The first one is encoded into a sequence of actions of lengthλl,
which approximately mimics a sequence of i.i.d. variables, distributed according
to pL. The second part is encoded into a sequence of actions of length(1 − λ)l,
which mimics pR . As for matching pennies, the encodings are obtained by
mapping typical sequences of signals to typical sequences of actions. This is
feasible, provided the entropy of the subsequence of signals is roughly equal to
the entropy of the distribution which player one tries to mimic.

We organize the proof as follows. For the moment, we let the lengthl of
the blocks be any integer such thatλlhL/h is an integer, and we defineσ
(it is also convenient to assume that

√
l is rational).σ depends on two small

parametersηL andηR . We then prove that, providedl is large enough andηl , ηR
small enough, the average payoff guaranteed byσ on any single block exceeds
λv(pL)+ (1− λ)v(pR)− ε.

By stationarity, we deal only with the second block. We denote byx =
(x1, . . . ,xl) the random stream of signals available to player one at the beginning
of the block. We setl1 = λlhL/h, and denote byxL (xR) the firstl1 (last l − l1)
components ofx. By construction,H(x) = lh, H(xL) = λlhL, andH(xR) =
(1− λ)lhR .
σ usesxL to play in the firstλl stages of the block, andxR to play in the last

(1 − λ)l stages of the block. Since the two encodings of signals into actions are
similar, we specify only the first part.

Step 1 (Coding sequences of signals into sequences of actions). LetηL > 0 be
small. It is convenient to assume that bothα = λl(hL − ηL)(h+ ηL) andβ = λl

are integers. This is consistent provided(hL − ηL)/(h+ ηL) is rational; arbitrary
smallηL can be chosen with this property. In the sequel, we simply writeη for ηL.

Underσ , player one keeps the firstα components ofxL (notice thatα � l1),
and encodes it into a sequence of actions of lengthβ .

We address now the question of how to playpL for β stages using a sequence
of signalsxα of lengthα.

We denote byC(η,α) the set of typical sequences of signals

C(η,α)=
{
x ∈ Cα :

1

2α(h+η)
� P(x)� 1

2α(h−η)

}
.
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Let Q = (pL)
⊗β be the distribution onAβ of a sequence ofβ i.i.d. actions, each

drawn according topL. We denote byA(η,β) the corresponding set of typical
sequences

A(η,β)=
{
y ∈Aβ :

1

2β(hL+η) � Q(y)� 1

2β(hL−η)

}
.

Using Lemma 9, we now chooseK0 > 0 such that bothP(C(η,α)) > 1 − ε

andQ(A(η,β)) > 1− ε whereη=K0/
√
l.

Note thatC(η,α) contains at most 2α(h+η) elements, andA(η,β) contains
at leastP(A(η,β)) × 2β(hL−η) elements. Hence, ifP(A(η,β)) � 1/2, C(η,α)
contains at most twice as many points asA(η,β).

Therefore, there existsy0 ∈Aβ , and a mapi :Cα →Aβ such that:

1. i(C(η,α))⊆A(η,β), and does not containy0;
2. i(xα)= y0 for xα /∈ C(η,α);
3. i−1(y) contains at most two elements fory �= y0.

The strategyσ plays the sequencei(x) of actions during the firstβ stages of
the block. Denote bŷP the law ofi(xα). We now prove that, providedl is large
enough,v(̂P)� v(Q)−Kε, whereK depends only on the payoff functiong.

We denote bŷP0 the law of i(xα) conditional onxα being typical (i.e.,
xα ∈C(η,α)).

Step 2 (A lower bound on the value guaranteed). We argue that if player two were
informed whetherxα ∈ C(η,α) or not before playing in the block, then the best
response of player two would lead to a lower payoff to player one. We rely here
on the classical argument that more information corresponds to a broader strategy
set, hence to a greater payoff to player two against thesamestrategy of player
one.

SinceP(C(η,α)) > 1− ε, this shows that

v(̂P)� (1− ε)v(̂P0)− ε‖G‖,
where‖G‖ = maxi,a |gi(a)|.

Step 3 (Comparison of̂P0 andQ). It remains to prove thatv(̂P0) is close tov(Q).
This will be done by estimating the strategic distance betweenP̂0 andQ and using
Lemma 7. We first estimate the standard Kullback distance betweenP̂0 andQ.

Lemma 13. There exists a constantK1 such that, for everyl

d(̂P0‖Q)�K1
√
l.
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Proof.

d(̂P0‖Q) = EP̂0
log

P̂0(y)

Q(y)

= EP̂0
log

P̂(y)
Q(y)

− logP
(
C(η,α)

)
�
[−α(h− η)+ 1

]+ β(hL + η)− log(1− ε)

� (α + β)η+ βhL − αh+ 2

�
(
hL − η

h+ η
+ 1

)
λlη+

(
hL − h(hL − η)

h+ η

)
λl + 2

the second equality uses the fact that no typical sequence is encoded intoy0, the
first inequality uses the fact that̂P(y) is at mosttwice the maximal probability
of a typical sequence of signals, andQ(y) is at least the minimal probability of
a typical sequence of actions. The result follows, sinceη=K0/l. ✷

We now complete the proof of Proposition 12. From Lemma 13,(1/l)d(̂P0‖Q)
goes to 0 asl goes to infinity. Applying Proposition 8 implies thatdS(̂P0‖Q) also
goes to zero asl goes to infinity. ✷

7. Replies

We show in this section that player two can defend cavU(H(p)). This result
is not new: it can be deduced from results by Neyman and Okada (2000). Since
the proof is short, we provide it, for completeness. Letσ be a strategy of player
one, known to player two. We define a strategyτ of player two as follows: in
stagen, player two computes the distributionpn of an, conditional on past play
(a1,b1, . . . ,an−1,bn−1), and plays a pure best reply to this distribution.

This strategyτ defends cavU(H(p)) againstσ .

Proposition 14. For everyn, γn(σ, τ )� cavU(H(p)).

Proof. For every 1�m� n, and play(a1,b1, . . . ,am−1,bm−1),

Eσ,τ
[
gm|a1, . . . ,bm−1

]
�U

(
H(pm)

)
� cavU

(
H(pm)

)
,

since, conditional on past play,am has entropyH(pm). By taking expectations
and applying Jensen’s inequality to cavU , one gets

Eσ,τgm � cavU
(
Eσ,τ

(
H(pm)

))
= cavU

(
H(am|a1, . . . ,bm−1)

)
= cavU

(
H(am,bm|a1, . . . ,bm−1)

)
,

where the first equality follows by definition of the conditional entropy, and the
second from the fact thatbm is a function ofa1, . . . ,bm−1.
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Now, by property of conditional entropy (and using Jensen’s inequality again)

1

n

n∑
m=1

Eσ,τgm � cavU

(
1

n
H(a1, . . . ,bn)

)
.

Finally, notice that(a1, . . . ,bn) is a function of(X1, . . . ,Xn), hence

H(a1, . . . ,bn)�H(X1, . . . ,Xn)= nH(p).

SinceU is nondecreasing, so is cavU , hence the result.

Remark. Of course,τ needs not be a best reply toσ in the long run.

Remark. Consider the example of matching pennies introduced above, and
denotepn = (pn,1 − pn). If σ is to be anε-optimal strategy of player one, it
must be that the inequalityγn(σ, τ )� (1/2)H(p) holds tightly. Therefore, it must
be the case that min(pn,1− pn)� (1/2)H(pn) holds tightly, “most of the time.”
Equality holds only ifpn = 0,1 or pn = 1/2. Therefore,σ must be such that,
“most of the time,” player two either anticipates (almost) perfectly player one’s
next move (pn = 0 or 1) or is (almost) completely ignorant of it (belief close to
(1/2,1/2)). These are the basic characteristics of theε-optimal strategy for player
one designed in Section 4.✷

8. Extensions and concluding remarks

8.1. Markov chains

Remark that no use was made of the independence of the family{Xn} except
in the proof of Lemma 9. The notion of per stage entropy extends to the case of
an irreducible and aperiodic Markov chain with finite state space. Assuming(Xn)

is such a process with transition probabilities(πi,j ) and stationary probability
measure(pi), the entropy of(Xn) takes the value

h= −
∑
i,j

πi,j logpj .

Note that this definition is in accordance with the previous one when(Xn) is
a i.i.d. sequence of random variables.

By the central limit theorem for functions of mixing processes (see, e.g.,
Theorem 21.1 in Billingsley, 1968), the sequence(1/

√
n)(logP(X1, . . . ,Xn) +

nh) either converges in distribution to a Gaussian variable, or converges in
probability to zero (see p. 187 in Billingsley, 1968). In both cases, there exists
K and large enough such that, for everyn�N,

P
{
(x1, . . . , xn): −K � ln P(x1, . . . , xn)+ nh√

n
�K

}
� 1− ε.
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Therefore, the conclusion of Lemma 9 still holds forn large enough. Hence,
Theorem 2 still holds.

An interesting extension (left open here) would certainly be to study the case
in which player one can also control by his actions the transition probabilities
of the Markov chain. This would lead us to study the trade-off between payoff
acquisition and entropy acquisition.

8.2. Repeated games of imperfect monitoring

In a repeated game with imperfect monitoring, players can use the signaling
structure of the game to generate correlation. These possibilities of internal
correlation, first noticed by Lehrer (1991), result in a broader set of Nash
equilibria of the repeated game. Let us informally discuss the question of
characterizing the minmax levelyi for playeri in n-player repeated game with
imperfect monitoring. Obviously, because players−i (others thati) can play
repeatedly according to any profile of mixed strategies,yi is at most equal to
the minmax levelvi of player i in the one shot game (in mixed strategies).
On the other hand, playeri can always defend his minmax level in correlated
strategieswi . Hencewi � yi � vi . Since players−i may have possibilities to
correlate their actions using the signaling structure of the game, we may have
yi < vi . It is the case thatyi = wi when players−i can be seen as a unique
player that may choose any mixed strategy (over the tuples of actions of players
−i) in the one shot game. This however is not true in general, and players−i seen
as a unique player may be limited in its strategy space.

Thus, in order to characterizeyi in the general case, one has to study
the optimal trade-off between correlation acquisition and efficient punishment
of player i. We hope that our work may serve as a first step towards such
a characterization.
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Appendix A. Proof of Proposition 8

A.1. Preliminaries

In the sequel, we shall often use functionsh :R+ → R
+ that are non-decreasing, continuous,

concave, and such thath(0)= 0. For simplicity we shall call themnice functions.
We first establish an existence result of nice functions.



O. Gossner, N. Vieille / Games and Economic Behavior 41 (2002) 206–226 223

Lemma 15. Let K be a topological space andf,g :K → R
+. Assume there existsβ :R+ → R

+
concave such thatg � β ◦ f , that {x: f (x)= 0} �= ∅ and {x: f (x)= 0} ⊆ {x: g(x)= 0}. Then there
exists a nice functionα such thatg � α ◦ f .

Proof. The correspondenceψ from R
+ to K defined byψ(y) = {x ∈ K: f (x) � y} is non-

decreasing and non-empty valued, andg is bounded byβ ◦ f onψ(y). Hence, the functionα0 given
by α0(y)= supψ(y) g is non-decreasing and takes its values onR

+, andα0 � β. Hence the concave

mappingα = cavα0 is a well-definedR-valued function and satisfiesg � α◦f . Concavity ofα onR
+

implies continuity onR+∗ , and since 0 is an extreme point ofR
+, α(0)= α0(0)= 0.

Recall thatα = inf{γ : γ linear andγ � α0}. Sinceα0 is non-decreasing, all linear functions
γ � α0 are non-decreasing, and so isα.

It remains to prove the continuity at 0.α being concave is dominated by an affine mapping:
α(x) � ax + b. Fix 1> ε > 0, and considerη > 0 such that max[0,η] α0 � ε. Take x ∈ [0, ηε],
x = (1−p)x1+px2 with x2 � x1 � 0. If x2 � η then clearly(1−p)α0(x1)+pα0(x2)� ε. If x2 � η

thenp � ε so thatpα0(x2)� pax2 +pb � ax+ εb. Hence in both cases(1−p)α0(x1)+pα0(x2)�
ε(aη + b + 1). Therefore in both cases 0� α(x) � ε(aη + b + 1) for x ∈ [0, ηε], which implies
continuity at 0. ✷
A.2. Kullback and absolute Kullback distance

We recall some well-known elementary properties of the Kullback distanced . Recall thatΩ is the
set of(p,q) such thatp is absolutely continuous w.r.t.q.

Lemma 16. The mappingd is separately convex in each variable onΩ , d � 0 onΩ , andd(p‖q)= 0
if and only ifp = q.

We define onΩ theabsoluteKullback distance as

|d|(p‖q)= Ep

∣∣∣∣log
p(s)
q(s)

∣∣∣∣.
The Kullback distance is a standard tool in statistics and information theory. However, we are not
aware of any use of the absolute Kullback distance.

Obviously,d � |d|, and{d = 0} = {|d| = 0}.

Lemma 17. There exists a nice functionα2, such that|d| � α2 ◦ d onΩ .

For future use, it is crucial to make here the following observation. In this lemma,Ω (hence
the underlying setS) is given. The nice function may thus depend onS. However, it will be clear from
the proof below, that the nice function we exhibit is independent ofS.

Proof. Given Lemma 15, we need only to prove that|d| is majorized by a concave function ofd . We
prove that|d| � d + 2.

Let (p,q) ∈Ω . SetS1 = {s,p(s) > q(s)} andS2 = {s,p(s)� q(s)}.
Set f (p,q) = ∑

s∈S1
p(s) logp(s)/q(s) and g(p,q) = ∑

s∈S2
p(s) logq(s)/p(s), so that

d(p‖q)= f (p,q)−g(p,q) and|d|(p‖q)= f (p,q)+g(p,q). Thus, the result follows from the claim
below.

Claim. g(p,q)� 1 for every(p,q).

For p fixed, we shall prove that maxq g(p,q)� 1. Let

Q= {
q: (p,q) ∈Ω} and S2 = {

s: q(s)� p(s)
}
.
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Write

Q=
⋃
y�1

Qy,

with Qy =Q ∩ {q: q(S2)= yp(S2)}. We prove that maxq∈Qy
g(p,q)� 1.

The mapq �→ g(p,q)=∑
S2

p(s) logq(s)/p(s) is concave onQy . It is therefore immediate to
check that it is maximized at anyq∗ which satisfiesq∗(s)= yp(s), for everys ∈ S2. Notice that

g(p,q∗)=
∑
S2

p(s) logy = p(S2) logy = q(S2)
logy

y
� logy

y
.

The claim follows. ✷
A.3. Strategic distance and Kullback distance

The purpose of this section is to prove the next result, which clearly implies Proposition 8.

Proposition 18. There exists a nice functionα such that

dS(P‖Q)� α

(
1

n
d(P‖Q)

)
for everyn ∈ N, P,Q ∈∆(An) such thatP � Q.

Proof. Let first k ∈ {0, . . . , n− 1}. At stagek+ 1, one has

EP
[∥∥P(·|Hk+1)− Q(·|Hk+1)

∥∥
1

]=
∑
ak∈Ak

P
(
ak
)∑
a∈A

∣∣P(a|ak)− Q
(
a|ak)∣∣.

Let g(p,q) = ∑
a∈A |p(a) − q(a)| and f (p,q) = ∑

a∈A p(a)|p(a) − q(a)|. Both f and g are
continuous and nonnegative over the compact set∆(A)×∆(A). Moreover,

f (p,q)= 0 ⇒ (∀a, p(a)= 0 or p(a)= q(a)
)
.

Since
∑
A p(a)=∑

A q(a), this impliesp = q, henceg(p,q)= 0.
Thus,{f = 0} ⊆ {g = 0} and clearly{f = 0} �= ∅. Furthermore, withβ the constant function 2,

g � β ◦ f . Lemma 15 yields a nice functionα1 such thatg � α1 ◦ f . Therefore,∑
ak∈Ak

P
(
ak
)(∑

a∈A

∣∣P(a|ak)− Q
(
a|ak)∣∣)

�
∑
ak∈Ak

P
(
ak
)
α1

(∑
a∈A

P
(
a|ak)∣∣P(a|ak)− Q

(
a|ak)∣∣). (8)

Hence

dS(P‖Q) � 1

n

n−1∑
k=0

∑
ak∈Ak

P
(
ak
)
α1

(∑
a∈A

P
(
a|ak)∣∣P(a|ak)− Q

(
a|ak)∣∣)

� α1

(
1

n

n−1∑
k=0

∑
ak∈Ak

P
(
ak
)∑
a∈A

P
(
a|ak)∣∣P(a|ak)− Q

(
a|ak)∣∣),

where the second step uses Jensen’s inequality.
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SinceP � Q, wheneverP(ak) > 0 one has

P
(
a|ak)> 0 ⇒ Q

(
a|ak)> 0.

Using the fact that|x − y| � | logx − logy| for everyx,y ∈ ]0,1[, one deduces

dS(P‖Q)� α1

(
1

n

n−1∑
k=0

∑
ak∈Ak

P
(
ak
)|d|(Q(·|ak)∥∥P

(·|ak))).
By using Lemma 17, then twice Jensen’s inequality

dS(P‖Q) � α1

(
1

n

n−1∑
k=0

∑
ak∈Ak

P
(
ak
)
α2
(
d
(
P
(·|ak)∥∥Q

(·|ak))))

� α1 ◦ α2

(
1

n

n−1∑
k=0

∑
ak∈Ak

P
(
ak
)
d
(
P
(·|ak)∥∥Q

(·|ak))).
We now check that the argument ofα1 ◦ α2 is simply(1/n)d(P‖Q).

1

n

n−1∑
k=0

∑
ak∈Ak

P
(
ak
)
d
(
P
(·|ak)∥∥Q

(·|ak))

= 1

n

n−1∑
k=0

∑
ak∈Ak

P
(
ak
)∑
a∈A

P
(
a|ak) log

P(a|ak)
Q(a|ak)

= 1

n

n−1∑
k=0

∑
ak∈Ak

P
(
ak
)∑
a∈A

P
(
a|ak){log

P(ak, a)

Q(ak, a)
− log

P(ak)

Q(ak)

}

= 1

n

n−1∑
k=0

{ ∑
ak∈Ak

∑
a∈A

P
(
ak
)
P
(
a|ak) log

P(ak, a)

Q(ak, a)
−

∑
ak∈Ak

P
(
ak
)
log

P(ak)

Q(ak)

}

= 1

n

n−1∑
k=0

{
d(Pk+1‖Qk+1)− d(Pk‖Qk)

}
= d(P‖Q),

wherePk andQk are the marginals ofP andQ overAk . The result follows, sinceα1 ◦ α2 is nice. ✷
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