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Abstract

We characterize the maxmin of repeated zero-sum games in which player one plays
in pure strategies conditional on the private observation of a fixed sequence of random
variables. Meanwhile we introduce a definition of a strategic distance between probability
measures, and relate it to the standard Kullback distance.
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1. Introduction

In the game ofmatching pennieg/here the payoff of player one is given by
the matrix

Heads Tails
Heads 1 | O
Tails| O | 1

the unique optimal strategy of each player is to toss a fair coin, and to play
according to the outcoméieadsif the coin turnsHeads and Tails otherwise.

Consider a repetition of matching pennies in which player one (the maximizer)
can only condition his actions on the privately observed outcome of a biased coin,
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whose parametgr is common knowledge. Prior to each round of play, he gets to
observe a toss which is independent of previous tosses and has to choose a (pure)
action. We study the optimal strategies of player one and the corresponding value,
namely the maxmin of that repeated game.

An obvious way to play is for player one to choose in any round an action
according to the toss ithat round. This strategy secures ninl — p) in the
long run. We show that player one can actually do much better: the maxmin
of the infinitely repeated game exists and is equal to half the entfbfp) =
—plna p — (1= p)Ina(1 — p) of the distributionp = (p, 1 — p).

The game of matching pennies has specific features which make the proof a
bit ad hoc(for instance, the unique optimal strategy in the one-shot game is the
mixed action with maximal entropy). For the general case of a zero-sum §ame
defineU (h) as the maximum that player one can guarante@ imhen restricted
to mixed actions of entropy at moat Let cavwU denote the smallest concave
function that majorize$/. Assume that the sequence of private observations is
i.i.d. (we shall argue that this assumption can be weakened to a great extent). We
prove that the max min of the corresponding infinitely repeated game 5 @v
whereh is the entropy of any private observation.

Tools borrowed from information theory, such as entropy or relative entropy,
already found several applications into the literature of repeated games with
bounded complexity. In a model of repeated games with stationary bounded
memory, Lehrer (1994) makes use of mutual entropy as a measure of the
information that a player's memory may contain about other player’s strategies.
Neyman and Okada (1999) introduce strategic entropy as a measure of the
randomness contained in a player’s strategy, and deduce bounds on the values
of repeated games played by finite automata. Lehrer and Smorodinsky (2000)
provide sufficient conditions for convergence of learning processes that are
phrased in terms of the relative entropy between a utility maximizer’s belief on
the sequence of nature’s moves and its true probability distribution. Our result is
close in flavor to those of Neyman and Okada (2000). They proved that if player
one can choosanystrategy of per stage entropythen the maximum that player
one can guarantee is cé\(k). We thus obtain a similar result without assuming
that player one can choose the stream of random variables on which his strategies
can be conditioned. We essentially show that a player can approximate (through
a deterministic codingany strategy of per stage entropyfrom any stream of
random variables of per stage entropyWe introduce the notion aftrategic
distancebetween two random variables as the appropriate measure for the quality
of this approximation, and relate this notion with the classical Kullback distance.
Shannon (1948) studied the question of coding information into the smallest
sequence of bits (Os and 1s) as possible. The optimization problem we study is
somehow dual since player one needs to use his random information during as
much time as possible.
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The paper is organized as follows. Section 2 contains the model and the
statement of the results. Section 3 is a short reminder of basic properties of
conditional entropy. In Section 4, we constraabptimal strategies of player one,
in the game of matching pennies. We introduce the strategic distance and relate it
to the Kullback distance in Section 5. Using this, we constrtmptimal strategies
for player one in the general case in Section 6. Section 7 deals with replies of
player two in the general case. The model of bounded rationality we study may
seem somehow unnatural and isolated from classical problems of game theory.
In fact, we connect it with problems arising in repeated games with imperfect
monitoring in Section 8.

2. Model and results
2.1. The repeated gamewraxmin

A two player zero-sum gamé& given by finite sets of actionda and B for
player one and player two and a payoff functipnd x B — R is fixed. We study
repetitions of G in which player two’s strategy choice is unrestricted whereas
player one privately observes the successive realizations of a sequence of i.i.d.
random variables, but has to play a pure strategy.

Our aim is to study how the maxmin of the infinitely repeated game depends
on the characteristics of this private source of uncertainty. Thus, we may and do
consider only pure strategies for player two.

The repeated gamé&, proceeds as follows. We leX = (X,),>1 be
a sequence of i.i.d., random variables, each with pawith values in a finite
setC. In each staga > 1, player one gets to obserng,; players one and two
choose actions; these are publicly announced, and the game proceeds to stage
n + 1. The description of the game is common knowledge.

Given the monitoring assumptions, the behavior of player one in siage
is described by a function, : (C x A x B)""1 — A. A strategy of player
one is a sequence = (o,),>1 Of such maps. Similarly, a strategy of player two
is a sequence = (t,),>1, With 7, : (A x B)" 1 — B.

Any profile (o, ) (together withX) induces a probability distributioR, , on
the set of play$l = (A x B)N endowed with the product of discretealgebras.
Expectation with respect #, ; is denoted by, ..

We denote bya,, b, the (random) actions of the players in stageand
setg, = g(a,, b,). Notice that, oncer andt are fixed,a, andb, are simply
functions of the random sequen¥e(more preciselya, depends on the first
components oK, andb,, on the first: — 1 components, through player one’s past
play). ThusP, - (8, = a) =P(x, a,(x) = a).
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The expected average payoff for player one up to stageis

1 n
Ya(0,7) =Eo [ =3 gm}.
n m=1

We recall the standard definition of the maxmin.
Definition 1. Letv € R.

e Player 1 can secureif, for everye > 0, there exists a strategy, and a stage
N > 1 such that:

Vi,Vn 2 N, (o, T) 2V —6.

e Player two can defend if, given anyo ande > 0, there exists a strategy
and a stag&v > 1 such that

Vn2 N, wu(o,t)<v+e.

e v is the maxmin of the game if player one can seayrand player two can
defendv.

2.2. Main result

In order to state our main result, we need to recall the definition of entropy. If
g is a distribution over a finite s&2, the entropy ofy is

H(@) =~ d(@)log(q(@)),
wes2
where the logarithm is taken to be in base 2, and 0 leg®by convention. For
h > 0, we letU (h) be the maxmin of the (one-shot) game in which player one is
restricted to mixed actions of entropy at mast

Uh)= max minE,g(.,b)
x)<h b

Finally, recall that the concavification cawf a real mapping: defined on
a convex set is the least concave function which majotizes

Theorem 2. Themaxminof G, is cavU (H (p)).

The proof of the theorem is organized as follows: We need to prove both that
player one can secukeand that player two can defemd The most difficult part
of the proof is the construction efoptimal strategies of player one. We construct
such strategies for the game of matching pennies in Section 3. Next, we introduce
some tools in Section 4, that we use in Section 5 to deal with general zero-sum
games. That player two can defends a consequence of a previous analysis by
Neyman and Okada (2000), we provide a proof for the sake of completeness in
Section 6.
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05+ 0.5 +
sh(p)

Fig. 1.

2.3. Example: matching pennies

In the game of matching pennie$,= {T, B}, B = {L, R} and the payoff to
player one is given by the array

L R

T(1|0
B|0|1

AssumeC = {0, 1} andp(1) = p (the sequenck is {0, 1}-valued). We sek (p) =
H(p). It is well known thatk is a continuous, increasing, concave, bijective
function from[0, 1/2] to [0, 1]. Moreoveri(p) = h(1 — p), for eachp. Denote
by n~1:[0, 1] — [0, 1/2] the inverse maph being concave} 1 is convex.

Here,U (h(p)) = min{p, 1 — p}, which is the payoff player one guarantees by
playing eitherpT + (1 — p)B or (1— p)T + pB. Thus,U (x) = h~1(x). Given
the properties of 1, cavl (x) = x /2. Theorem 2 shows that the max min@f,
exists and is equal tl/2) H (p).

The two graphs (see Fig. 1) above show visually thatl&@up)) =
(1/2)h(p). Clearly, U(h(p)) is concave inp whereas it is a convex function
of h(p).

3. Conditional entropy

The entropy of a random variable is usually seen as a good measure of the
uncertainty contained in it, or of the amount of information gained by observing
it. By definition, the entropyH (Y) of a random variabl& with finite range is the
entropy of its distribution.

Let (Y1, Y2) be a random vector with values in a finite s x £2», with
distributionq. Forw1 € 21, denote byq(-|w1) the conditional distribution of>,
givenY1 = w1 and by (Y2|w1) the entropy ofy(-|w1)

h(Yzlop) == ) d(wzley) logg(wz|ws).

W€



O. Gossner, N. Vieille / Games and Economic Behavior 41 (2002) 206-226 211

Theconditional entropyof Y> givenY is defined to be

H(Y2|Y1) = Ey, [h(Y2]YD)] =) d(@1)h(Y2|w1).

w1

It is the average uncertainty on the valueYef given that one observés.
An easy computation shows that

H(Y1,Y2) = H(Y1) + H(Y2|Y1), (1)

where H(Y1, Y2) is the entropy of the variablé€Ys, Y2). If (Y1,...,Y,) is
a random vector with finite range x - - - x £2,,, the relation (1) yields inductively

n
H(Y1,...,Y,)=H{)+ Y HilY1,...,Yi1). )
i=1
Notice that, ifYs,...,Y, are i.i.d. variablesH (Y1, ..., Y,) = nH (Y1). Finally,
remark that for anyY with finite range £2, and any functionf:2 — ©,
H(f(Y)) < H(Y).

4., To guarantee: matching pennies

We construct are-optimal strategy for player one in the game of matching
pennies, assuming = {0, 1}. We shall show that what is optimal for player one
is not to use his private endowment of uncertainty ebastantrate, but rather to
accumulatet for a while, and use it to play in theostunpredictable way.

Fix ¢ > 0. We design a strategy of player one that depends on a parameter
n > 0. We shall prove that, providegis small enoughg guarantee%H(p) up
to ¢: there existgV, such that, for every andn > N,

1
Yu(0,7) 2 SH(P) — &, 3)

whereo is defined by blocks of length( function of ). Undero, player one’s
play is independent of player two’s past play. Moreover,eath block, it is
independent of thplayin the past blocks; it depends only on the signals received
by player one in the previous block (it plays repeatekiliy the first block).

Denote byP = Q) p the distribution ovef0, 1}¥ induced by a sequence,)
ofi.i.d. variables, distributed accordingpoFor simplicity, we writeH for H (p).

Choose; > 0 such thatH + n is a rational number. Definetgpical sequence
of lengthn to be a sequencec {0, 1}", such that

1 o 1

on(H—n)"
Let C(n, n) be the set of typical sequences of lengthAll typical sequences
have roughly the same probability. The next lemma is known as the asymptotic
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equipartition property in information theory. It asserts that the probability of the
set of typical sequences goes to lmagoes to infinity. We refer to Cover and
Thomas (1991) for proofs and comments.

Lemma3.Vy > 0, lim,_ o P(C(n, n)) = 1.

Note. We shall later prove a stronger version of this result (Lemma 9) where we
provide an estimate of relative ton. This stronger result will be useful for the
general zero-sum case, but Lemma 3 is sufficient for our proof in the case of
matching pennies.
We choose the lengthof the blocks so thaP(C(/, 7)) > 1 —n andl(H +
n) € N. We defines on a single block > 2, and consider that, at the beginning
of that block, player one has a private sigratirawn from{0, 1}/ according tcP.
SinceP(x) > 1/2/(H+m for x e C(l, n), the cardinality ofC(l; n) is at most
2/(H+n) Therefore, there exists a one-to-one ma@(l, n) — {T, B}/(H+0,
Defineo as:

e if xe C(l, n), play the sequenaéx) of actions in the first(H + n) stages of
the block, then repeatediy;
e if X¢ C(l,n), play repeatediy".

Notice that in the last — [(H + n) stages, player one plays repeatedly
a best reply of player two will obviously be to playin those stages, yielding a
payoff of O to player one. We argue below that in the fi(#f + 1) stages, player
one’s behavior is essentially unpredictable: in most of the stages, the distribution
of player one’s action, conditional on his past actions, is clogé®, 1/2) (with
high probability). We prove this formally.

For simplicity, we (re)label the stages of bloskrom 1 to/. We denote by
a=(ay,...,qH+y) the sequence of actions played by player one in the first
part of the block. We also s@t= (T, ..., T) (sequence of length— I[(H + 7)).

We first prove that the entropy afis almost maximal.

Lemma4. One hasH (a) > [(H — 3n).

Proof.

H(a)

- Y P@=a)log(Pa=a))

ae(T,B}Y(H+n)

= — Y P(a=a)log(P(a=a)) — P(a=T)log(Pa=T))
a#T
— Y P)log(P(x))

xeC(l;n)
i(0)£T

WV
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1
> I(H - n)<P(C(l; ) — m)

> I(H—-n)1-2n
> I(H — 3n).

The second inequality uses the fact thabgP(x) > [(H — n) holds for every
x € C(l,n), and the fact thaat mostone sequence € C(l, n) is mapped tor,
the probability of this sequence being at mog2/17 =", The last two inequalities
are valid, provided) is small enough. O

Lemma 5. For everye > 0, there exists)g > 0 such that for every) < no and
everyr

1
1 1
Eo,r |:7 ;gn:| = EH —€&.

Thus, the expected average payoff on any block (except the first one) is at least
H /2 — ¢, providedn is small enough. This clearly implies (3), and concludes the
proof that player one can guaranidg¢2) H (p).

Proof. We give an estimate of

I
. 1
o= meE,,,, |:7 E 1gn:|.
n=

Denote byp, = (px, 1 — p,) the conditional distribution o0&, conditional on
ai, ..., a,—1: itis the belief held by player two in stageover player one’s next
action, given player two’s information (and knowing player one’s strategy). Since
player one’s behavior is independent of player two’s play, it is a best reply of
player two too to play L whenevemp, < % andR otherwise. This yields a payoff
of min(p,, 1 — p,) in stagen.

Therefore,

l
1 .
Ol:Ea|:7 El mm(Pnyl_pn):|~

Forn > I(H +n), p, =1, P5-a.s.; player one playE in these stage, irrespective
of x. Thus,

1 [(H+n)
a=H+nE; | ——— min(pn, 1 — pp) |
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Notice that mirip,1 — p) = h~1(H(p)), where h~1 has been defined in
Section 2.3. Thus,

L(H+n)
_ -1
a = (H+U)Eg|:7l(H+n) > h (H(pn))}

1

) 1 I(H+n)
= hi Ea T rr N n
> (H+n) ( |:l(H+n) > Hp )D

1

l
= (H+ n)hl(r (Hin)H(aﬂal, : ..,an1)>
(H+mn) 4

_ 1 1
= (H+nh (Z(H—i—n)H(a))'

The first inequality is obtained by applying Jensen’s inequality to the convex
function ~~1. The second one uses the fact that the conditional entropy
H(a,lay, ..., a,—-1) is defined a€, (H (p,)). The last one is a consequence of
the property (2) of conditional entropies.

Using Lemma 4, one deduces that> (H + n)h (1 — 4y/H). Since
h~1(1) = 1/2, one getsa > H/2 — ¢, providedn has been chosen small
enough. O

5. Toolsfor the general case

In order to prove our main result in the general case, we first develop here
a number of tools. The general idea of our construction is that, by properly
encoding his private information, player one tries to mimic some strategy (the
optimal strategy in the case of matching pennies). It is therefore crucial to have a
measure of the quality of the approximation. We shall define such a measure, the
strategic distance between two probabilities over sequences of moves.

5.1. The extra difficulties

One feature of matching pennies that made its analysis simple is that the
unique optimal strategy of player one is the distribution with maximal entropy,
the uniform distribution(1/2, 1/2). Assume that player one selects his moves
over a block of lengtl according to the distributio”R € A({T, B}"*) which has
an entropy close to the maximal entropyln the case of matching pennies, we
could deduce the two facts:

e First, it must be the case that at almost every stage, the entropy of player one’s
move conditional to his past moves on this block must be almost maximal.
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e Second, if the entropy conditional to the past moves is close to the
maximal one, then the corresponding probability conditional to player two’s
information must be close td/2, 1/2).

We could then conclude that player two could not do much better on average
than 1/2 over that block. In that sens$gis a good approximation of the optimal
strategy of player one in the stage matching pennies.

We need to elaborate on this. L&the any zero-sum game, with action sgts
and B, and payoff functiorg, which is being played times. Assume that player
1 wishes to mimic the distributio € A(A™), and selects its moves according to
Pe A(A") (bothP andQ may be viewed as mixed strategies, which put positive
probabilities only on pure strategies which are independent of player two’s play).

We define a measure of how good the approximatio@Qadby P is, suited
to game-theoretic purposes. It is clear that this measure cannot be defined as
the difference between the entropiesPfind Q. First, P and Q can have the
same per stage entropy but have different entropies for a given stage and a given
past history. Second, even in a one-stage game, two strategies can have the same
entropy and guarantee different payoffs. Indeed, in the gardefined by

2|0
0|1

the two strategiegl/3, 2/3) and(2/3, 1/3) have the same entropy. The former is
optimal and guaranteeg2, while the latter guarantees only3.

5.2. Strategic distance

Recall thatP, Q € A(A"). Letk € {1, ..., n}. At stagek, given player one’s
past playiy, the difference between whBtandQ secure can be estimated by

[ming (QC1#), b) — ming (PC1h), b)| < M[PCIh) = QCIAO |y (4)

whereM =2max 5 |g|, and]| - ||1 is theL1-norm onRA.
Thus, as for stagk, a good measure of the approximation is given by

Ep[[|PC1H0 — QCIHO| ],

which we write |P(:|Hx) — Q(|Hw)ll1.p (Hx being the algebra generated by
player one’s play in the first — 1 stages).
This motivates the following definition.

Definition 6. Let A be a finite setp € N, and P, Q € A(A"). The strategic
distance fronP to Q is

1 n
ds(PIQ) = ~ D IPCIHY = QCIHD | 4 p-
k=1
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Remark. This definition depends o' only through the action set of player
one,A.

Remark. Beware that the strategic distance is not a distance, since it is not
symmetric. The same abuse of language is common when speaking of the
Kullback distance (see below).

Notation. Forn e N, andP € A(A"), we set

1
u(P) = min ~ Ep(ngk bm)

k=1

Notice thatv(P) is the amount secured B/in then-stages version of;. For
n=1andp € A(A), the above notation particularizesi) = min, Epg(a, b).
The lemma below is a straightforward consequence of the inequality (4).

Lemma 7. Let M = 2maxi 5 |g|. For everyP, Q e A(A"), with Q = ¢®" for
someg € A(A) one has

[u(P) —u(Q)] < Mds(P|Q).
5.3. Comparison of the strategic and Kullback distances

Let S be a finite set. Denote b the set of(p, q) € A(S) x A(S) such that
p < g: q(s) = 0= p(s) = 0. The Kullback distance betwegnandq is defined
as

P(s)

d(pla) = Ep|09p( i —Zp( og

with 0log$ = 0 by convention.

We shall construct strategies of player one which induce probabilities over
action sequences which are close for Kullback distance to some fixed probability.
In order to state that the payoffs guaranteed are also close, we shall rely on the
following proposition, the proof of which is postponed to Appendix A.

Proposition 8. Let (nx); be a sequence of positive integers, and condileQ, €
A(A™) such that

. 1
lim —d(Pl|Qu) =0;
k—o00 nj

then

lim ds(Px||Qx) =0.
k— 00
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5.4. A stronger version of the asymptotic equipartition property

The asymptotic equipartition property (Lemma 3) does not provide the rate of
convergence oP(C(n, n)). We shall use the following lemma.

Lemma 9. For everye > 0, there existK > 0 such that

Vn >0, P(C(%,n))}l—e. (5)

Proof. Let us writex = (x,)1<;<.. Note thatx € C(n, n) if and only if
logP(X1, ... Xy) + nk| < .

Observe that 108 (X1, . .., X,) = Y_; 10g p(X;) has mean-nh, by definition ofh
and variance V2 whereV 2 is the variance of log(x1). Tchebytchev’s inequality
yields directly

V2
P&¢CMWD<;;.

Hence the result witlk =V //e. O

6. To guarantee: the general case

In this section we prove that player one can guarante&/¢amp)), whatever
be the underlying one-shot game. For simplicity, we/set H (p). We start by
recalling two general well-known properties of the cav operator.

Remark 10. For any mapping, an equivalent definition of cawvis

cavu(x) = sup Au(x1) + (1 — Du(xo), (6)
13420
x=Ax1+(1-21)x2

wherex, x1, andxy are restricted to be in the domainof

Remark 11. If u is continuous, the supremum can be taken over any relatively
dense subset ¢fA, x1,x2): 1> A1 >0, x =Ax1+ (1 — A)x2}.

Since U is clearly continuous, we need only prove that player one can
guarantee

max AUhL) + (L= WU (hg), ("
(122.20: h=rhy +(1—M)hg)

where we impose that, h;/h andhg/h be rational numbers. That we shall
prove as Proposition 12.
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Proposition 12. Lethy, hg, andA be given. Assume thag /i, hg/h, andi are
rational numbers, an@d = Ahp + (1 — A)hg. Letpy andpg be mixed actions in
the one-shot game, such thidi(p,) = hr, H(Pr) = hr.

Then player one can guarantee(pz) + (1 — A)v(pg).

Proof. Let us briefly sketch the idea of the construction.

As for matching pennies, am-optimal strategyo is defined by blocks
of length /, and it uses on a given block only the private signals received
during the previous block. The idea is to divide this stream of signals into two
subsequences. The first one is encoded into a sequence of actions ofAlEngth
which approximately mimics a sequence of i.i.d. variables, distributed according
to pr. The second part is encoded into a sequence of actions of I€hgth)/,
which mimics pg. As for matching pennies, the encodings are obtained by
mapping typical sequences of signals to typical sequences of actions. This is
feasible, provided the entropy of the subsequence of signals is roughly equal to
the entropy of the distribution which player one tries to mimic.

We organize the proof as follows. For the moment, we let the lehgih
the blocks be any integer such thath; /h is an integer, and we define
(it is also convenient to assume thg( is rational).c depends on two small
parameterg; andng. We then prove that, providdds large enough ang}, nz
small enough, the average payoff guaranteed lpn any single block exceeds
rv(pr) + @ —2)v(pr) —e.

By stationarity, we deal only with the second block. We denotexby
(X1, ..., X;) the random stream of signals available to player one at the beginning
of the block. We sety = Alhr /h, and denote by; (xg) the firsti1 (last! — 1)
components ok. By construction,H (X) = lh, H(Xy) = AMlhr, and H(Xg) =
(1= Mlhg.

o usesxy to play in the firstil stages of the block, and; to play in the last
(1 — 2! stages of the block. Since the two encodings of signals into actions are
similar, we specify only the first part.

Step 1 (Coding sequences of signals into sequences of actions);;Let0 be
small. It is convenient to assume that batk= Al(h;, — nz)(h + ) andB = Al
are integers. This is consistent providagd — nz)/(h + nr) is rational; arbitrary
smalln;, can be chosen with this property. In the sequel, we simply write ;. .

Undero, player one keeps the firat components ok;, (notice thato < I1),
and encodes it into a sequence of actions of leggth

We address now the question of how to pfgyfor g stages using a sequence
of signalsx, of lengtha.

We denote byC (5, «) the set of typical sequences of signals

C(n,a):{xeC“: —<P(x)<;}.
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Let Q = (p,)®? be the distribution om” of a sequence of i.i.d. actions, each
drawn according tg; . We denote byA(n, B) the corresponding set of typical
sequences

1 1
— B
A(’?, ﬂ) - {y € A - Zﬁ(hL+'7) g Q(y) g zﬂ(hL*n) }

Using Lemma 9, we now choog€y > 0 such that bothlP(C(n, «)) > 1 — ¢
andQ(A(n, B)) > 1 — & wheren = Ko/ /1.

Note thatC (5, @) contains at most®®"+" elements, andi(n, 8) contains
at leastP(A (1, B)) x 28— elements. Hence, iIP(A(n, B)) > 1/2, C(y, o)
contains at most twice as many points4g, 8).

Therefore, there existy € A?, and a map : C* — A# such that:

1. i(C(n,a)) € A(n, B), and does not contaiyp;

2. i(Xa) = yo for X ¢ C(n, @);
3. i~1(y) contains at most two elements foE£ yo.

The strategy plays the sequendéx) of actions during the firsg stages of
the bIock.Penote by the law ofi(x,). We now prove that, providedis large
enoughp(P) > v(Q) — K¢, wherek depends only on the payoff functign

We denote byPg the law of i(x,) conditional onx, being typical (i.e.,
Xg € C(n, @)).

Step 2 (A lower bound on the value guaranteed). We argue that if player two were
informed whethex, € C(n, «) or not before playing in the block, then the best
response of player two would lead to a lower payoff to player one. We rely here
on the classical argument that more information corresponds to a broader strategy
set, hence to a greater payoff to player two againsstraestrategy of player
one.

SinceP(C(n, @)) > 1 — ¢, this shows that

v(P) > (1-2)u(Po) — £||GIl.
where[|G|| = max q g’ (a)|.
Step 3 (Comparison oPo andQ). It remains to prove tha_x(ﬁg) is close tov(Q).

This will be done by estimating the strategic distance betviseandQ and using
Lemma 7. We first estimate the standard Kullback distance betRgandQ.

Lemma 13. There exists a constaiit; such that, for every

d(PollQ) < K1v/1.
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Proof.
_ P
d(PollQ) = Ep, log (5’8))
P(y)
= Ep, Iogw —logP(C(n, @)

[—a(h—n) + 1]+ B(hr +n) —log(l — &)
(a+Bn+phy —ah+2
hy —n h(hy —1n)

the second equality uses the fact that no typical sequence is encodeg, itite
first inequality uses the fact th&(y) is at mosttwice the maximal probability
of a typical sequence of signals, a@dy) is at least the minimal probability of
a typical sequence of actions. The result follows, sineeKo/l. O

NN

N

We now complete the proof of Proposition 12. From Lemma(l@l,\)d(ﬁoHQ)
goes to 0 as goes to infinity. Applying Proposition 8 implies thag(Po||Q) also
goes to zero akgoes to infinity. O

7. Replies

We show in this section that player two can defend@é# (p)). This result
is not new: it can be deduced from results by Neyman and Okada (2000). Since
the proof is short, we provide it, for completeness. &dte a strategy of player
one, known to player two. We define a strategpf player two as follows: in
stagen, player two computes the distributigny of a,, conditional on past play
(ag,b1,...,a,-1,b,—1), and plays a pure best reply to this distribution.

This strategyr defends caW¥/ (H (p)) against.

Proposition 14. For everyn, y, (o, 1) < cavU (H (p)).
Proof. Forevery 1< m < n, and play(a, b1, ..., an-1, bn—1),

Eoc[Omlat, ..., bu_1] <U(H(pm)) < cavU (H (pm)),
since, conditional on past plag,, has entropyH (p,,). By taking expectations
and applying Jensen’s inequality to déyone gets
EocOn < cavU (Eo,: (H (Pm)))
cavU (H (anlat, ..., bpu-1))
= cavU (H (@n,bnlas, ..., bu-1)),

where the first equality follows by definition of the conditional entropy, and the
second from the fact thé,, is a function ofay, ..., b,,_1.
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Now, by property of conditional entropy (and using Jensen’s inequality again)

1< 1
= Z Ey.cQn <cavU( =H(ay,....b,) ).
nm=1 n

Finally, notice thatay, ..., b,) is a function of(X1, ..., X,), hence
H(@g,...,by) <H(X1,...,X,) =nH(p).
SinceU is nondecreasing, so is c8y hence the result.

Remark. Of course;r needs not be a best replydoin the long run.

Remark. Consider the example of matching pennies introduced above, and
denotep, = (p,, 1 — pn). If o is to be ans-optimal strategy of player one, it
must be that the inequality, (o, ) < (1/2) H (p) holds tightly. Therefore, it must

be the case that mip,, 1 — p,) < (1/2)H (p,,) holds tightly, “most of the time.”
Equality holds only ifp, = 0,1 or p, = 1/2. Thereforeg must be such that,
“most of the time,” player two either anticipates (almost) perfectly player one’s
next move p, = 0 or 1) or is (almost) completely ignorant of it (belief close to
(1/2,1/2)). These are the basic characteristics ofstfuptimal strategy for player
one designed in Section 40

8. Extensions and concluding remarks
8.1. Markov chains

Remark that no use was made of the independence of the faijlyexcept
in the proof of Lemma 9. The notion of per stage entropy extends to the case of
an irreducible and aperiodic Markov chain with finite state space. Assufiing
is such a process with transition probabilities, ;) and stationary probability
measurd p;), the entropy of X,,) takes the value

h:_Zni’j |ngj.
i,j

Note that this definition is in accordance with the previous one Wiy is
a i.i.d. sequence of random variables.

By the central limit theorem for functions of mixing processes (see, e.g.,
Theorem 21.1 in Billingsley, 1968), the sequerigg,/n)(logP(X1, ..., X,,) +
nh) either converges in distribution to a Gaussian variable, or converges in
probability to zero (see p. 187 in Billingsley, 1968). In both cases, there exists
K and large enough such that, for ever N,

INP(x1,...,x,) +nh
NG

P{(xl,...,xn): —K < SK}}l—a.
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Therefore, the conclusion of Lemma 9 still holds fodarge enough. Hence,
Theorem 2 still holds.

An interesting extension (left open here) would certainly be to study the case
in which player one can also control by his actions the transition probabilities
of the Markov chain. This would lead us to study the trade-off between payoff
acquisition and entropy acquisition.

8.2. Repeated games of imperfect monitoring

In a repeated game with imperfect monitoring, players can use the signaling
structure of the game to generate correlation. These possibilities of internal
correlation, first noticed by Lehrer (1991), result in a broader set of Nash
equilibria of the repeated game. Let us informally discuss the question of
characterizing the minmax level for playeri in n-player repeated game with
imperfect monitoring. Obviously, because players (others thati) can play
repeatedly according to any profile of mixed strategigsis at most equal to
the minmax level’ of playeri in the one shot game (in mixed strategies).
On the other hand, playércan always defend his minmax level in correlated
strategiesw’. Hencew' < y’ < v'. Since players-i may have possibilities to
correlate their actions using the signaling structure of the game, we may have
yi < v'. It is the case that’ = w' when players—i can be seen as a unique
player that may choose any mixed strategy (over the tuples of actions of players
—i)inthe one shot game. This however is not true in general, and playessen
as a unique player may be limited in its strategy space.

Thus, in order to characteriz¢’ in the general case, one has to study
the optimal trade-off between correlation acquisition and efficient punishment
of playeri. We hope that our work may serve as a first step towards such
a characterization.
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Appendix A. Proof of Proposition 8

A.1l. Preliminaries

In the sequel, we shall often use functiohsR™ — R* that are non-decreasing, continuous,
concave, and such that0) = 0. For simplicity we shall call themice functions.
We first establish an existence result of nice functions.
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Lemma 15. Let K be a topological space and, g: K — R*. Assume there exis:RT — RT
concave suchthat < o f, that{x: f(x) =0} #¢¥ and{x: f(x) =0} C {x: g(x) =0}. Then there
exists a nice functiom such thatg <« o f.

Proof. The correspondencg from Rt to K defined byy (y) = {x € K: f(x) < y} is non-
decreasing and non-empty valued, and bounded bys o f on (y). Hence, the functiog given
by ag(y) = supy () g is non-decreasing and takes its valuesRoh, andag < 8. Hence the concave
mappinge = cavag is a well-definedR-valued function and satisfigs< « o f. Concavity ofx onR*
implies continuity orlR™*, and since 0 is an extreme pointRf-, «(0) = ap(0) = 0.

Recall thate = inf{y: y linear andy > «g}. Sincewq is non-decreasing, all linear functions
y > ag are non-decreasing, and saxis

It remains to prove the continuity at @. being concave is dominated by an affine mapping:
a(x) < ax +b. Fix 1> ¢ > 0, and consider) > 0 such that may , ag < . Takex € [0, nel,
x = (1— p)x1+ pxo with xo > x1 > 0. If xp < n then clearly(1— p)ag(x1) + pag(x2) <e. lf xo =1
thenp < & so thatpag(x2) < paxo+ pb < ax +¢b. Hence in both caséd — p)ag(x1) + pag(x2) <
e(an + b + 1). Therefore in both casesQa(x) < e(an + b + 1) for x € [0, ne], which implies
continuity at 0. O

A.2. Kullback and absolute Kullback distance

We recall some well-known elementary properties of the Kullback distdnBecall that2 is the
set of(p, ) such thaip is absolutely continuous w.rd.

Lemma 16. The mapping! is separately convex in each variable 81 d > 0on £, andd(p|lq) =0
if and only ifp =q.

We define ons2 theabsoluteKullback distance as

log & .

qis)
The Kullback distance is a standard tool in statistics and information theory. However, we are not
aware of any use of the absolute Kullback distance.

Obviously,d < |d|, and{d = 0} = {|d| = 0}.

ld|(plla) = Ep

Lemma 17. There exists a nice functiagy, such thatd| < ap od on £2.

For future use, it is crucial to make here the following observation. In this lensnéhence
the underlying sef) is given. The nice function may thus depend$nHowever, it will be clear from
the proof below, that the nice function we exhibit is independert. of

Proof. Given Lemma 15, we need only to prove thdtis majorized by a concave function @f We
prove thatld| < d + 2.

Let(p,q) € 2. SetS1 = {s,p(s) > q(s)} andS2 = {s, p(s) < q(s)}.

Set f(p,q) = Yses, P(s)10gp(s)/a(s) and g(p,q) = X ses, P(s)10ga(s)/p(s), so that
dplla) = f(p,d —gp,q) and|d|(plla) = f(p.d) +g(p, q)- Thus, the result follows from the claim
below.

Claim. g(p, q) < 1for every(p, Q).
For p fixed, we shall prove that mgx(p, q) < 1. Let
O={a: (p.aye} and Sy={s: q(s) >p(s)}.
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Write

o= 9.

y=1

with Qy = QN {a: q(S2) = yp(S2)}. We prove that mag o, (. ) < 1.
The mapq — g(p,q) = Zsz p(s)logq(s)/p(s) is concave orQy. It is therefore immediate to
check that it is maximized at ary* which satisfiegj* (s) = yp(s), for everys € So. Notice that
logy logy
2(p.q%) = p(s)logy = p(s) log y = q(sy% <=
S2 ”

The claim follows. O
A.3. Strategic distance and Kullback distance
The purpose of this section is to prove the next result, which clearly implies Proposition 8.

Proposition 18. There exists a nice functian such that
1
ds(PIQ) <« ;d(PIIQ)

for everyn e N, P,Q € A(A™") such thatP « Q.

Proof. Letfirstk € {0,...,n — 1}. At stagek + 1, one has

Ep[|PC M) — QUIHi D] = Y P(@¥) Y |P(ala®) — Q(ald¥)|.

ake Ak acA

Let g(p.a) = > calP(@ — q(@)] and f(p,q) = > ,c4 P(@)Ip(@) — g(a)|. Both f and g are
continuous and nonnegative over the compactset) x A(A). Moreover,

f.9=0 = (Ya, p(a)=0o0rp(a)=q(a)).
Sinced_ 4 p(a) = 4 d(a), this impliesp = g, henceg(p, q) =0.

Thus,{f =0} € {g =0} and clearly{ f = 0} # @. Furthermore, with3 the constant function 2,
g < Bo f.Lemma 15 yields a nice functiam such thatg < a1 o f. Therefore,

Y Pla)( X Plale’) - Qfale') )

ak e Ak acA
< Z P(ak)al(zp(alakﬂp(alak)—Q(a\ak)|>, (8)
ake Ak acA
Hence
n—1
asCPIQ) < 13 Y Plat)aa( 3 Plale!) Plala’) - Qala"))
k=0 gk c Ak acA

1= k k k k
< (x1<;z Z P(a )Zp(a\a )|F’(a|a )7Q(a\a )|>,

k=0gkc Ak acA

where the second step uses Jensen’s inequality.
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SinceP « Q, wheneveP(a¥) > 0 one has
P(a\ak) >0 = Q(a\ak) > 0.
Using the fact thatx — y| < |logx — log y| for everyx, y € 10, 1[, one deduces
ds(P|Q) < a1< Z Y Pa)IdI(Q(1a") [P(la )))
k=0 gk Ak

By using Lemma 17, then twice Jensen’s inequality

ISPIO) < (zz g <|a>||o<a>)>)

k= OakeAk

< moaz( Z > Pla P(-la")Q(-a")))

k=0gkeak

We now check that the argumenta®f o a5 is simply (1/n)d(P| Q).

—Z Y- P(@)d(P(1a)[Q(1a"))

k=0 gk c Ak

n 1 X
== Z Z Z a\ k) log P(a|ak)

" k=04kcak acA Q(ala®)

n 1 x i

P(a*, a) P(a®)

= Z > Py P(a\ak){log ~ log }

" i =0akenk ey Q(ak,a) Q)

1y P(ak, a) P(a*)

T Z{ Y. > P(a*)P(ala")log Qak.a) > P(a*)log o@h }
k=0"qkeakaca ’ akeAk

n—1
1
== > {d(PrsalQusn) — d(PLIQW)
k=0

=d(P|Q),

whereP; andQy, are the marginals d® andQ over AX. The result follows, sinces o az is nice. O
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