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Abstract. In games with incomplete information, more informa-
tion to a player implies a broader strategy set for this player in the
normal form game, hence more knowledge implies more ability. We
prove that, on the other hand, given two normal form games G and
G′ such that players in a subset J of the set of players possess more
strategies in G′ than in G, there exist two games with incomplete
information with normal forms G and G′ such that players in J
are more informed in the second than in the first. More ability
can then be rationalized by more knowledge, and our result thus
establishes the formal equivalence between ability and knowledge.

1. Introduction

“Ability” refers to the possibility of an agent to achieve particu-
lar actions. “Knowledge” refers to the information possessed by the
agent. For instance, “running 100 m. in less than 12 sec.” is an ability,
whereas “knowing the password required to log into computer account
X” refers to some knowledge. Some skills can be described either in
terms of knowledge, or as abilities, as for instance “preparation of a
particular recipe”, or “piloting a plane”. In fact, the connections be-
tween knowledge and ability are strong, and the aim of this paper is to
clarify these.

Different levels of ability for a player can be represented by compar-
ing normal form games. If an agent possesses more strategies in game
G than in G′, this expresses more ability for this agent in G than in G′.
Knowledge is naturally represented by information structures. Given
two information structures E and E′, a player has more knowledge in
E than in E′ when his information partition is finer in E than in E′.

An information structure together with a payoff specification with
incomplete information define a game with incomplete information,
that can be represented in normal form. It is well known that finer
information implies larger strategy sets in the associated normal form
games. Indeed, agents having more knowledge can use more infor-
mation in their decision making, which results in more ability. For

Date: July 29, 2005.
1



2 OLIVIER GOSSNER

instance, when a firm discovers the knowledge of some technology, this
results in a larger production set.

In this paper we prove the equivalence of ability and knowledge.
Since it is already well known that more knowledge implies more ability,
we show a converse to this proposition, namely that more ability can
always be rationalized as the consequence of more knowledge. More
precisely, given two finite normal form games G and G′, and assuming
that players in a subset J of the set of players have more ability in
G′ than in G, we construct two information structures E and E′ and a
payoff specification γ, such that:

• E′ is more informative than E for players in J ,
• The normal form game associated with E and γ is G
• The normal form game associated with E′ and γ is G′

The proof of this result relies on the following logic. Assume that in
G′, player i possesses a strategy a which is not available in G. We try
to explain this extra strategy by extra knowledge of player i in games
with incomplete information. To do this, we construct a game in which
player i, in order to play strategy a, must announce a password, which
is initially uniformly drawn in the continuum [0, 1]. If i is informed of
the value of the password, i has the possibility to announce the true
value whatever it is, hence to achieve a with probability 1. If i has
no information of the password, the announced value will match the
password with zero probability, hence a is not an available action to i.
In this reasoning, the ability to play a is rationalized as the consequence
of the knowledge of the adequate information. Our proof relies on a
continuum space of states of the world (the passwords in our previous
example). We show in section 4.3 that this assumption is needed, where
we provide a counter example when this space is finite or countable. In
order to relativize the importance of the assumption of an infinite set of
states of the world, we also present a characterization of the reductions
of strategy sets that arise from information coarsening when the space
of states of the world is finite in section 4.5. This characterization
allows us to understand the continuum of states of the world situation
as the limit case of large but finite state spaces.

Our result demonstrates that, without imposing any further struc-
ture on the nature of knowledge of the players, the only predictable
effect of an increase in information to some player is an increase of the
strategy set of this player in the corresponding normal form game.

The equivalence of knowledge and information gives a better under-
standing of the question of value of information. It is known at least
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since Hirshleifer’s [Hir71] work that the value of information is not al-
ways positive in economic situations, neither for the agent for receiving
more information, nor for society as a whole. As pointed out by Ney-
man [Ney91], the reason why information can have a negative value is
that other players are aware of this extra information. More informa-
tion is always beneficial to the agent if other agents are ignoring it.

Some classes of games are known to show either social or private
positive value of information. In decision problems (one player games),
the value of information is positive if the agent is a a Bayesian expected
utility maximizer. Indeed, more strategies are always beneficial, as the
only choice to be made is the choice of the utility maximizing strat-
egy. Works by Wakker [Wak88] and Chassagnon and Vergnaud [CV99]
show that value of information can be negative for a non expected util-
ity maximizer. For more than one player, the logic of socially positive
value of information extends to games of common interests. Bassan,
Gossner, Scarsini and Zamir [BGSZ03] show that the common interest
condition is necessary and sufficient for a property of socially positive
value of information to hold. The private value of information is pos-
itive in purely antagonistic zero-sum games, where finer information,
or a larger strategy set, can only be beneficial to the player receiving
it, and harmful for the other player. Gossner and Mertens [GM01] and
Lehrer and Rosenberg [LR03a] study the value of information in these
games. For general games, examples of situations with negative value
of information can be found e.g. in Bassan, Scarsini and Zamir [BSZ97]
or in Kamien, Tauman and Zamir [KTZ90]. Lehrer and Rosenberg
[LR03b] study the maps from partitional information structures to val-
ues of games that arise as values of games with incomplete information.

Blackwell [Bla51], [Bla53] shows that a statistical experiment yields
a better payoff than another in every decision problem if and only
if it is more informative. Gossner [Gos00] characterizes information
structures that induce more correlated equilibrium distributions than
others in every game. This order between information structures is
compatible with the social value of information in all games.

Our result allows to view the value of more information as the value
of a larger strategy set. Of course, such a value cannot be positive
in general. For instance, by deleting the “defect” strategy for both
players in the prisoner’s dilemma, one transforms a game with defection
as unique Nash equilibrium into a game with cooperation as unique
Nash outcome. Hence, more strategies for both players is harmful for
them both. In other words, committing not to use some information
is formally equivalent to committing not to use certain strategies, and
such a commitment may have positive effects.
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We introduce the comparison concepts between normal form games
in section 2, and between information structures in section 3. We
establish the connexion between the two in section 4, and briefly discuss
applications to the value of information in section 5.

2. Normal form games

An arbitrary set I of players is fixed.
If (Xi)i is a family of sets and J ⊂ I, XJ denotes Πi∈JXi and Πj 6=iXj

and X denotes XI . For a family of maps αi : Xi → Yi, αJ : X → Y is
defined by αJ(x) = (αi(xi))i∈J and α denotes αI . We use the shortcuts
i for {i}, −J for I−J . Given any set X, IdX denotes the identity map
of X.

A normal form game G = ((Si), g) is given by a strategy space Si for
each player i and by a payoff function g : S → RI .

A game in mixed strategies is given by pure strategy sets (Ai,Ai),
and by a measurable and bounded map g : A→ RI , Si is then the set
of measures on (Ai,Ai) and g is defined on S by g(s) =

∫
g(a)ds, where

s is the product measure of (si)i on A.
When each Ai is finite, G is a finite game in mixed strategies.
Two strategies si, s

′
i in Si are payoff-equivalent whenever for all s−i ∈

S−i, g(si, s−i) = g(s′i, s−i).

2.1. Equivalent games. We now define equivalence between games.

Definition 1. Given two normal for games G and G′, G is equivalent
to G′, and we note G ∼ G′, when there exists a family of mappings
ψ = (ψi)i, ψi : Si → S ′i such that:

(1) g = g′ ◦ ψ,
(2) There exist maps (e′i)i, e

′
i : S

′
i → Imψi such that for every K ⊂ I

and s′ ∈ S ′, g′(s′) = g′(s′−K , e
′
K(s′K)).

We then say that ψ is an equivalence map from G to G′.

Remark 1. Condition (2) of the definition implies each strategy s′i ∈ S ′i
is payoff equivalent to e′i(s

′
i) ∈ Imψi. When I is finite, this condition

is equivalent to the existence for any s′i of a payoff-equivalent strat-
egy in Imψi. This equivalence does not hold when I is not finite, see
Example 2.

Proposition 1. The composition of two equivalence maps is an equiv-
alence map. In particular, ∼ is an equivalence relation.

Proof. The relation ∼ is reflexive since the identity on G to fulfills the
conditions.
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We prove ∼ is symmetric. Assume G ∼ G′, and let ψ, e′ be the
corresponding mappings. We select ψ′i such that ψi ◦ ψ′i = e′i, and let
ei = ψ′i ◦ ψi. Then, g ◦ ψ′ = g′ ◦ ψ ◦ ψ′ = g′ ◦ e′ = g′. And for K ⊂ I:

g ◦ (IdS−K
, eK) = g′ ◦ (ψ−K , ψK ◦ ψ′K ◦ ψK) = g′ ◦ (ψ−K , e

′
K ◦ ψK)

= g′ ◦ ψ = g

To prove that ∼ is transitive, assume G ∼ G′ and G′ ∼ G′′, and let
ψ, e′, ψ′, e′′ be the corresponding mappings. Let ψ̃ = ψ′◦ψ. It is verified
that g = g′′ ◦ ψ̃. Let αi and α′i such that ψi ◦ αi = e′i, ψ

′
i ◦ α′i = e′′i , and

define ẽ′′i : S ′′i → Imψi by ẽ′′i = ψ̃i ◦ αi ◦ α′i. For K ⊂ I, we have:

g′′ = g′′ ◦ ψ′ ◦ α′ = g′ ◦ α′ = g′ ◦ (α′−K , e
′
K ◦ α′K)

= g′′ ◦ (ψ′−K ◦ α′−K , ψ
′
K ◦ e′K ◦ α′K)

= g′′(e′′−K , ẽ
′′
K) = g′′(IdS′′−K

, ẽ′′K)

�

Example 1. G and G′ are two finite games in mixed strategies given
by the payoff matrices:

l m r
t 1, 0 5, 2 3, 1
b 5, 0 3, 6 4, 3

G

L R
T 1, 0 5, 2
M 5, 0 3, 6
B 3, 0 4, 4

G′

Define ψ1 and ψ2 on pure strategies by ψ1(t) = T , ψ1(b) = M ,
ψ2(l) = L, ψ2(m) = R, ψ2(r) = 1

2
L + 1

2
R, and extend these maps

linearly to the mixed strategy spaces. Then, g = g′ ◦ ψ, and to see that
every strategy in G′ is payoff equivalent to a strategy in the image of
ψ, note that B is payoff equivalent to 1

2
T + 1

2
M .

The following example shows some difficulties that may arise with
an infinite number of players.

Example 2. The set of players is the set of integer numbers. G is
given by Si = {A} and gi ≡ 0, G′ is given by Si = {a, b}, gi(s) = 1
if #{i, si = b} = ∞, and gi(s) = 0 otherwise. The maps ψi : Si → S ′i
given by ψi(A) = a verify g = g′ ◦ ψ, and since a and b are payoff
equivalent strategies in G′, every strategy in G′ is payoff-equivalent to
an element of Imψi. Note that condition (2) of definition 1 is not
satisfied. In fact, G and G′ are not equivalent since it is impossible to
construct a map ψ′ from G′ to G such that g′ = g ◦ ψ′.
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2.2. Restrictions of games. Deleting elements of the strategy space
for player i transforms a game G into a game G′ in which allows less
strategic choices for player i. More generally, the following definition
captures the fact that more strategies are available for a subset J of
players in G′ than in G.

Definition 2. G is a restriction for players in J of G′, and we note
G ⊆J G

′, when there exists a family of mappings ϕ = (ϕi)i, ϕi : Si → S ′i
such that:

(1) g = g′ ◦ ϕ,
(2) There exist maps (e′i)i6∈J , e

′
i : S

′
i → Imϕi, ∀s′ ∈ ImϕJ × S ′−J ,

∀K ⊂ I−J , g′(s′) = g′(e′K(s′K), s′−K).

We then say that ϕ is a restriction map, or J-restriction map from G
to G′.

Remark 2. It follows from the definitions that G ∼ G′ if and only if
G ⊆∅ G

′ and that G ⊆J G
′ implies G ⊆J ′ G

′ whenever J ⊆ J ′.

Remark 3. Condition (2) of the definition implies each strategy s′i ∈
S ′i is payoff equivalent to e′i(s

′
i) ∈ Imψi. When I is finite, the two

conditions are equivalent, otherwise they are not, see example 2.

Proposition 2. The composition of two J-restriction maps is a re-
striction map. In particular, the relations ⊆J are transitive.

Proof. Let ϕ and ϕ′ be the restriction maps from G to G′ and from
G′ to G′′, and let e′−J , e

′′
−J be the corresponding maps on S ′J and S ′′J .

Letting ϕ̃ = ψ′ ◦ ϕ, we have g = g′′ ◦ ϕ̃.
For i 6∈ J let αi and α′i such that ϕi ◦αi = e′i, ϕ

′
i ◦α′i = e′′i , and define

ẽ′′i : S ′′i → Imϕi by ẽ′′i = ϕ̃i ◦ αi ◦ α′i. For K ⊂ I−J , we have:

g′′ = g′′ ◦ ψ′ ◦ α′ = g′ ◦ α′ = g′ ◦ (α′−K , e
′
K ◦ α′K)

= g′′ ◦ (ψ′−K ◦ α′−K , ψ
′
K ◦ e′K ◦ α′K)

= g′′(e′′−K , ẽ
′′
K) = g′′(Id′′S−K

, ẽ′′K)

�

Example 3. Consider the finite games in mixed strategies G and G′

given by the payoff matrices:

l r
t 1,−1 −1, 1
b 0, 0 0, 0

G

L R
T 1,−1 −1, 1
B −1, 1 1,−1

G′
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Define ϕ1 and ϕ2 on pure strategies by ϕ(t) = T , ϕ(b) = 1
2
T + 1

2
B,

ϕ(l) = L, ϕ(r) = R and extend these maps linearly to the mixed strategy
spaces. Then, ϕ, verifies the properties of the definition with J = {1},
so G ⊆1 G

′. In fact, G is a version of G′ in which player 1 is restricted
to play mixed strategies that put weight no more than 1

2
on B.

Remark 4. If −J is finite, condition (2) of definition 2 can be replaced
by: There exist maps (e′i)i6∈J , e

′
i : S

′
i → Imϕi, ∀s′ ∈ ImϕJ ×S ′−J , ∀i 6∈ J ,

g′(s′) = g′(e′i(s
′
i), s

′
−i).

Remark 5. Point (2) of definition 2 imposes that for i 6∈ J , for any
element of S ′i there exists an element e′i(s

′
i) of Imϕi that is payoff equiv-

alent to s′i against all elements of ImϕJ ×S ′−J−i. Note that e′i(s
′
i) is not

necessarily payoff equivalent to s′i, as shown by next example.

Example 4. Consider the finite games in pure strategies G and G′

given by the payoff matrices:

l
t 0, 0

G

L R
T 0, 0 1, 1
B 0, 0 2, 2

G′

The map ϕ defined by ϕ(t, l) = (T, L) is a 2-restriction map from G to
G′. Note however that B is not payoff-equivalent to T .

2.3. Affine restrictions. We prove in this section that when I is finite
and G, G′ are finite games in mixed strategies, the restriction maps can
be taken affine.

Proposition 3. Assume I is finite and G, G′ are finite games in mixed
strategies. Then there exists affine maps (ϕi)i such that ϕ is a J-
restriction from G to G′.

Proof. Let ϕ be a J-restriction map from G to G′. Define ϕ̃ by ϕ̃i(si) =
Esi

ϕi(ai). For s ∈ S, g(s) = Esg(a) = Esg
′(ϕ(a)) = g′(Esϕ(a)) =

g′(ϕ̃(s)). Let e−J verify condition (2) of definition 2 for ϕ, and for
i 6∈ J let αi be such that ϕi ◦ αi = e′i. Let then ẽ′i = ϕ̃i ◦ αi. For
s′J = ϕJ(aJ) and s′−J ∈ S ′−J , and K ⊂ −J :

g′(s′) = g′(ϕJ(aJ), ϕ−J(α−J(s′−J))) = g(aJ , α−J(s′−J))

= EαK(s′K)g(aJ , α−J−K(s′−J−K), aK)

= EαK(s′K)g
′(ϕ(aJ), ϕ−J−K(α−J−K(s′−J−K)), ϕK(aK))

= g′(s′−K , ẽi(s
′
K))

This relation extends linearly to s′J ∈ Imϕ̃J × S ′−J . �
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Remark 6. An equivalence that is affine and onto from a finite game
with finite number of players to another is a reduction in the sense of
Mertens [Mer03]. Since there always exists a reduction from finite game
in mixed strategies with finite number of players to its reduced normal
form (see [VJ98]), we deduce that every such game is equivalent to its
reduced normal form.

2.4. Restrictions and equivalences. The aim of this section is to
address the following question: Assume that G is a restriction (for
any subset J of the players, or more generally for J = I) of G′, and
that G′ is a restriction of G. Can we infer that G and G′ are equiva-
lent? Answering this question helps clarifying the connections between
equivalences and restrictions.

We first provide a counter-example to this conjecture for general
games.

Example 5. We consider a version of an “iron arm” fight in which
player’s strengths may vary. There are 2 players, 1 and 2. In G,
player i chooses some energy put in the fight, ai ∈ [0, 1]. The payoff
to player i is 1 is ai > a3−i (i wins the fight), 0 if ai = a3−i (draw),
and −1 is ai < a3−i (i loses the fight). The game G′ is the same
as G except that player 1’s strategy set is [0, 2]. The game G′′ is the
same as G except that both player’s strategy sets are [0, 2]. Considering
the maps ψi : ai 7→ 2ai from [0, 1] to [0, 2] show that G and G′′ are
equivalent. By definition of the games, G ⊆1 G

′ and G′ ⊆2 G
′′, hence

G ⊆{1,2} G
′ ⊆{1,2} G. But G and G′ are not equivalent: indeed, player 1

has a strategy that guarantees a win in G′, but not in G.

The previous counter example relies on infinite pure strategy spaces.
We now state a positive answer for finite games in mixed strategies.

Theorem 1. Assume that I is finite and G and G′ are finite games in
mixed strategies such that G ⊆I G

′ and G′ ⊆I G, then G ∼ G′.

We start with a lemma.

Lemma 1. If I is finite, G is a reduced normal form finite game in
mixed strategiesφ = (φi)i a family of maps such that g ◦ φ = g, then
each φi is a permutation of Ai.

Proof. Let M be the Ai × A−i matrix with elements in RI defined
by Mai,a−i

= g(ai, a−i). Let S and T be the transition matrices over
Ai and A−i respectively given by Sai,bi

= φi(ai)(bi) and Ta−i,b−i
=

φ−i(a−i)(b−i). The relation g = g ◦ φ rewrites M = SM tT . Let k ∈ N
be such that both Sk and T k are transitions of aperiodic Markov chains,
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and let S∞ and T∞ denote the limits of the sequences (Snk)n and
(T nk)n. We deduce from the above that M = S∞M tT∞. Define φ∞

by φ∞i (ai)(bi) = S∞ai,bi
, φ∞−i(a−i)(b−i) = Ta−i,b−i

. Since φ∞i ◦ φ∞i = φ∞i :

g = g ◦ φ∞ = g ◦ (φ∞i ◦ φ∞i , φ∞−i) = g ◦ (φ∞i , IdS−i
)

So that each ai is payoff-equivalent to φ∞i (ai), hence ai = φ∞i (ai), S
∞

is the identity matrix, and φi is a permutation of Ai. �

Proof of theorem 1. From remark 6, remark 2 and proposition 2, it
suffices to prove the theorem when G and G′ are reduced normal forms.
From proposition 3, there exist linear J-restriction maps ϕ and ϕ′ from
G to G′ and from G′ to G, and let e, e′ be the corresponding maps on
S, S ′. , and let φ = ϕ′ ◦ ϕ. Then φ is an inclusion map, and by lemma
1 each φi is a permutation on Ai, thus a linear isomorphism on Si.

We now prove that each φi defines is surjective. For a′i∈A
′
i, let

si = φ−1
i (φ′i(ai)) and s′i = ϕi(si). Then φi(ai) = φ′i(si) and for every

s′−i ∈ S ′−i,

g′(a′i, s
′
−i) = g(ϕ′i(a

′
i), ϕ

′
−i(s

′
−i)) = g(ϕ′i(s

′
i), ϕ

′
−i(s

′
−i)) = g′(a′i, s

′
−i)

so that a′i and s′i are payoff equivalent. Since G′ is a reduced normal
form a′i = s′i. Hence a′i ∈ Imϕi, Imϕi = S ′i. This implies that ϕ is an
equivalence map from G to G′ (take e′ = IdS′). �

3. Knowledge: Comparison of information structures

3.1. Description of information. K is a measurable space of states
of nature. An information structure is given by E = (Ω, E , P, (Ei)i, κ),
where (Ω, E , P ) is a probability space of states of the world, Ei is a sub
σ-algebra of E that describes the information of player i, and κ is a
E-measurable application to K that describes the state of the nature.

Definition 3. We say that E is less informative for players in J than
E′, and we note E ⊆J E′ when E can be obtained from E′ by replacing
the σ-algebras E ′j by sub σ-algebras Ej for j ∈ J .

Example 6. Choose Ω = K = {k1, k2} endowed with the discrete σ-
algebra and the uniform probability, and κ is the identity. Set E ′1 =
E1 = E2 = {∅,Ω}, and E ′2 the discrete σ-algebra. Then, player 1 is
never informed of k, whereas player 2 knows k in E′ but not in E. We
have E ⊆2 E′.

3.2. Games of incomplete information. For a given space of states
of nature K, a payoff specification is given by measurable spaces Xi

and by a measurable and bounded payoff function with incomplete
information γ : ΠiXi ×K → RI .
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An information structure E and a payoff specification γ on the same
space K define a normal form game G(E, γ) in which a strategy for
player i is a measurable map fi from Ei to Xi and payoffs are given by
the relation gE,γ(f) = EPγ((fi)(ω), κ(ω)).

Example 7. Take up the information structures E and E′ of example 6,
and let X1 = {T,B}, X2 = {L,R}, and γ be given by the two payoff
matrices:

L R
T 0, 0 1, 2
B 2, 0 0, 2

k = 1

L R
T 0, 1 1, 0
B 2, 1 0, 0

k = 2

In GE,γ the only strategies for i ∈ {1, 2} are the constant ones in Xi,
and the payoff matrix of this game is:

L R
T 0, 1

2
1, 1

B 2, 1
2

0, 1

GE,γ

In GE′,γ the strategies for player 1 are the constant ones, and player
2 has 4 strategies. For instance LR is the strategy of player 2 that plays
L if k = k1 and R if k = k2. The payoff matrix of this game is

LL LR RL RR
T 0, 1

2
1
2
, 0 1

2
, 3

2
1, 1

B 2, 1
2

1, 0 1, 1
2

0, 1

GE′,γ

4. Relations between knowledge and ability

4.1. More knowledge implies more ability. We recall the well
known fact that more knowledge implies more ability.

Proposition 4. E ⊆J E′ implies GE,γ ⊆J GE′,γ.

Proof. Let Σi and Σ′
i be the sets of measurable maps from (Ω, Ei) and

(Ω, E ′i) respectively to Xi. It is straightforward that the family of inclu-
sion maps ψi from Σi to Σ′

i verifies the conditions of definition 2. �

Example 8. It is seen in the previous example that GE,γ ⊆J GE′,γ.

4.2. Question about a converse theorem. GivenK, and two games
such that G ⊆J G

′, we address the existence of E, E′, and γ, such that

• GE,γ ∼ G;
• GE′,γ ∼ G′;
• E ⊆J E′.
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4.3. A counter example if Ω is finite or countable. Let G and G′

be the one-player finite games in mixed strategies:

b 0

G

T 1
B 0

G′

Proposition 5. Consider the above games G and G′, and assume Ω
is finite or countable. There does not exist E, E′, and γ, such that

• GE,γ ∼ G;
• GE′,γ ∼ G′;
• E ⊆1 E′.

Proof. By contradiction. By deleting elements of Ω that have null
probability and merging elements which are not separated by E ′, we
reduce to the case where E ′ is the discrete σ-algebra and P (ω) > 0 for
all ω. We also assume wlog. that E = {∅,Ω}. From the equivalence
between G′ and GE′,γ, we deduce that min(xω)ω

∑
P (ω)g(xω, κ(ω)) is

well defined and equals 0. Hence, for each ω ∈ Ω there exists xω that
minimizes g(xω, ω). For every x ∈ X:∑

ω
P (ω)g(x, κ(ω)) ≥

∑
ω
P (ω)g(xω, κ(ω))

with strict inequality if there exists ω such that g(x, κ(ω)) > g(xω, κ(ω)).
By equivalence of G and GE,γ,

∑
ω P (ω)g(x, κ(ω)) = 0 for every x.

Hence, for every x, g(x, κ(ω)) = g(xω, κ(ω)). Therefore
∑

ω P (ω)g(x′ω, κ(ω))
is independent of (x′ω)ω, so that the payoff function of G′ must be iden-
tically 0. A contradiction. �

4.4. A positive result.

Theorem 2. Given any pair of games in mixed strategies such that
G ⊆J G

′, there exists K, E, E′ and γ, such that:

(1) GE,γ ∼ G;
(2) GE′,γ ∼ G′;
(3) E ⊆J E′.

Proof. We construct the information structures and the payoff specifi-
cation, and then verify the equivalences of games. Let ϕ, e′−J be the
maps from G to G′ as in definition 2.

The information structures Let (Kj,Kj, βj) for j ∈ J be inde-
pendent copies of [0, 1] endowed with the Borel sets and the Lebesgue
measure, and let (Ω, E , P ) be the product of these spaces. We let
K = Ω and κ be the identity map.
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For every i ∈ I, Ei = {∅,Ω}. For j ∈ J , E ′j is generated by Ki and
for j 6∈ J E ′j = Ej. It is thus verified that E ⊆J E′.

Payoff specification Assume wlog. that the Si’s and S ′i’s are dis-
joint. For i 6∈ J let Xi = Si and for i ∈ J let Xi = (Si ∪ S ′i) × Ki.
We endow Xi with the product of the power class 2Si∪S′i and Ki. For
i ∈ J we define an outcome function oi from Xi×Ki to (Si∪S ′i, 2Si∪S′i):
select s0

i ∈ Si, and let
oi((si, bi), ki) = si if si ∈ Si

oi((s
′
i, bi), ki) = s′i if s′i ∈ S ′i and bi = ki

oi((s
′
i, bi), ki) = s0

i if s′i ∈ S ′i and bi 6= ki

For C ⊂ Si∪S ′i, o−1
i (C) = {si ∈ Si∩C}∪{bi = ki, si ∈ S ′i∩C} if s0

i 6∈ C
and o−1

i (C) = {si ∈ Si ∩C} ∪ {bi = ki, si ∈ S ′i ∩C} ∪ {bi 6= ki, si ∈ S ′i}
if s0

i ∈ C, hence it is a measurable event. So oi is measurable.
For i ∈ J define õi from Xi×Ki to (S ′i, 2

S′i) by õi(xi, ki) = oi(xi, ki) if
oi(xi, ki) ∈ S ′i and õi(xi, ki) = ϕi(oi(xi, ki)) if oi(xi, ki) ∈ Si. For i 6∈ J ,
let õi = ϕi. This defines a measurable map õ = (õi)i : X × K → S ′.
The payoff function with incomplete information is γ = g′ ◦ õ. Note
that g′ is measurable from the product of the sets (S ′i, 2

S′i), hence γ is
measurable.

Verification of (2) For i 6∈ J , any strategy f ′i in GE′,γ plays con-
stantly some si ∈ Si, and we let ψ′i(f

′
i) = õi(si). For i ∈ J . Given any

strategy f ′i : (Ω, E ′i) → Xi and C ∈ A′
i, the map ω 7→ õi(f

′
i(ω), ki(ω))(C)

is measurable as the composition of measurable maps, and we define:

ψ′i(f
′
i)(C) =

∫
Ω

õi(f
′
i(ω), ki(ω))(C)dP

From the monotone convergence theorem, ψ′i(f
′
i) is σ-additive, hence

is a probability measure on (A′
i,A′

i). Given a profile f ′, ψ′(f ′) denotes
the product probability measure of (ψ′i(f

′
i))i.

For any C ∈ Πi2
Si ,

∫
Ω

IC õ(f
′(ω), k)dP =

∫
Ω

ICdψ
′(f ′), hence for

the Πi2
Si-measurable map g′,

∫
Ω
g′õ(f ′(ω), k)dP =

∫
Ω
gdψ′(f ′), which

implies gE′,γ(f
′) = g′(ψ′(f ′)). This establishes point (1) of definition 1

for G′. We now check point (2) of this definition: If j ∈ J , Imψ′i = S ′i
for every s′i ∈ S ′i, f

′
i given by f ′i(ω) = (s′i, ki) is such that ψ′i(f

′
i) = s′i,

so we set ẽ′i = IdS′i
. For j 6∈ J , Imψ′i ⊃ Imϕi and we set ẽ′i = ẽi. Hence

for K ⊂ I, g′ = g′ ◦ (IdS′−K∪J
, e′−J∩K) = g′ ◦ (IdS′−K

, ẽ′K).

Verification of (1) For i 6∈ J , any strategy fi in GE′,γ plays
constantly some si ∈ Si, and we let ψi(fi) = si. For i ∈ J , any
strategy fi in GE′,γ is such that oi(fi(ω), ki) equals P almost surely
some si ∈ Si, and we let ψi(fi) = si. In both cases ψ′i = ϕi ◦ ψi, hence
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gE,γ(f) = g′ ◦ ψ′(f) = g′ ◦ ϕ ◦ ψ(f) = g ◦ ψ(f), hence (1) of definition
1. For point (2), it suffices to observe that any strategy fi that plays
constantly si verifies ψi(fi) = si, so that Imψi = Si. �

Remark that the constructed information structures E and E′ depend
on J , but not on the games G and G′. Note also that the payoff
specification γ has the same image as g′. In particular, γ is zero-sum
whenever g′ is, and a group of players have common interests in γ
whenever they do in g′. This leads us the the following statement that
strengthens theorem 2.

Theorem 3. For every subset J of players, there exist information
structures E ⊆J E′ such that for any pair of games in mixed strategies
such that G ⊆J G

′, there exists a payoff specification γ that verifies:

(1) GE,γ ∼ G;
(2) GE′,γ ∼ G′;
(3) Imγ = Img′.

4.5. A characterization with finitely many states of nature.
When Ω is finite, more knowledge implies more ability (see proposition
4), but the converse may fail (see proposition 5). In this section, we
present a relation between games that strengthens the relation “is a
restriction of” and which is equivalent to a coarsening of information
when Ω is finite.

Definition 4. Given ε ≥ 0, G is an ε-restriction for players in J
of G′, and we note G ⊆ε

J G′, when there exists a family of mappings
ϕ = (ϕi)i, ϕi : Si → S ′i such that:

(1) g = g′ ◦ ϕ,
(2) For i 6∈ J , every element of S ′i is payoff equivalent to an element

of Imϕi,
(3) For i ∈ J and s′i ∈ S ′i, there exists a linear combination of ele-

ments of Imϕi which is payoff equivalent to a linear combination
of elements of S ′i in which s′i has weight no less than ε.

Remark 7. When G is a game in mixed strategies, point 3 of the
definition can be replaced by “there exists an element of Imϕi which is
payoff equivalent to a linear combination of elements of S ′i in which s′i
has weight no less than ε”.

Remark 8. When G and G′ are games in mixed strategies, this point
can also be replaced by “there exists an element of Imϕi which is payoff
equivalent to a linear combination of elements of S ′i in which s′i has
weight ε”.
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Remark 9. Note finally that G ⊆ε
J G

′ implies G ⊆ε′
J G′ for ε′ < ε and

that G ⊆0
J G

′ if and only if G ⊆J G
′.

Example 9. Consider the games G and G′ of Example 3. Since b in
G is payoff equivalent to 1

2
T + 1

2
B in G′, G is a 1

2
-restriction of G′ for

player 1.

Example 10. Consider the games G and G′ of section 4.3. Since the
strategy T in G′ cannot appear with a positive weight in any linear
combination of strategies of G′ which is payoff equivalent to b, there
exists no ε > 0 for which is G a ε-restriction of G′ for player 1.

The two following examples show that the games G and G′ of sec-
tion 4.3 are such that G can be approximated by games that are ε-
restrictions of G′, and G is an ε-restriction of games that are close to
G′, for ε > 0.

Example 11. Consider the one-player finite games in mixed strategies
Gε for 1

2
> ε > 0 and G′:

b ε

G

T 1
B 0

G′

G is an ε-restriction of G′ since b is payoff equivalent to the convex
combination εT + (1− ε)B.

Example 12. Consider the one-player finite games in mixed strategies
G and Gε for 1 > ε > 0:

b 0

G

T 1
B −ε

G′

Here again, G is an ε
1+ε

-restriction of G′ since b is payoff equivalent to

the convex combination ε
1+ε

T + 1
1+ε

B.

We now state an equivalent of theorem 3 when Ω is finite.

Theorem 4. For every finite subset J of players and ε > 0, there
exist information structures E ⊆J E′ over a finite space Ω such that for
any pair of games in mixed strategies G ⊆ε

J G′, there exists a payoff
specification γ that verifies:

(1) GE,γ ∼ G;
(2) GE′,γ ∼ G′;
(3) Imγ = Img′.
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Proof. We amend the proof of theorem 3.
The spaces (Kj,Kj, βj) for j ∈ J are now independent copies of

{1, . . . , n} endowed with the discrete σ-algebras and the uniform prob-
ability measures, where n > 1

ε
. The construction of the information

structures is otherwise unchanged.
From remark 8, we can select for each s′i ∈ S ′i a strategy s

′0
i (s′i) ∈ S ′i

and a strategy such si(s
′
i) ∈ Si such that (1− 1

n
)s

′0
i (s′i) + 1

n
s′i is payoff

equivalent to ϕi(si(s
′
i)).

The spaces Xi are defined as in the proof of theorem 3. We define
the outcomes functions oi : Xi ×Ki → Si ∪ S ′i for i ∈ J by:

oi((si, bi), ki) = si if si ∈ Si

oi((s
′
i, bi), ki) = s′i if s′i ∈ S ′i and bi = ki

oi((s
′
i, bi), ki) = s′0i (s′i) if s′i ∈ S ′i and bi 6= ki

The map õ : X × K → S ′ is defined from o as before, and the payoff
function with incomplete information is γ = g′ ◦ õ.

All remaining points of the proof are the same as in the proof of
theorem 3, except that of GE,γ ∼ G: For i 6∈ J and a strategy fi that
plays constantly si, we let ψi(fi) = si. For i ∈ J and a strategy fi, we
let:

ψi(fi) =

{
si if fi plays constantly (si, bi) ∈ Si ×Ki

si(s
′
i) if fi plays constantly (s′i, bi) ∈ S ′i ×Ki

The distribution induced over A′
i by a strategy fi is:

EP õi(fi(ω), ki) =

{
ϕi(si) if fi plays constantly (si, bi) ∈ Si ×Ki

(1− 1
n
)s′0i (s′i) + 1

n
s′i if fi plays constantly (s′i, bi) ∈ S ′i ×Ki

In both cases, this mixed strategy induced is payoff equivalent to
ϕi(ψi(fi)). From this we deduce:

gE,γ(f) = EPg ◦ õ(f(ω), k) = g′(φ(ψ(f))) = g(ψ(f))

Finally, we see as in the previous proof that any strategy in Si is payoff
equivalent to an element of Imψi. �

5. On the value of information

More information is beneficial in one player games, socially benefi-
cial in games with common interest, and privately beneficial for the
player receiving it in zero-sum games. These results can be seen as a
consequence that a broader strategy set is beneficial in these classes
of games. On the other hand, many situations are known in which
more information to some player may hurt this player, or the group of
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players. Theorem 2 can be used to construct such games with negative
value of information.

Example 13. Consider the games G and G′ given by the payoff ma-
trices:

L
T 3, 3
M 2, 0

G

l r
t 3, 3 0, 4
b 2, 0 1, 1

G′

Both games are dominance solvable, with (3, 3) as unique Nash payoff
in G, and (1, 1) as unique Nash payoff in G′. Since G is a restriction for
player 2 of G′, G is equivalent to some GE,γ, and G′ to some GE,γ, with
E ⊆2 E′. We are then facing a situation where the value of information
is negative, since the better information of player 2 in E′ has a negative
effect on the Nash payoff for both players.

Along the same lines, it is possible to construct examples in which
the value of more information for player 1 is for instance positive for
player 2, but negative for player 1.
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